Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem28 Structured version   Visualization version   GIF version

Theorem fin23lem28 9200
 Description: Lemma for fin23 9249. The residual is also one-to-one. This preserves the induction invariant. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡𝑖) ∩ 𝑢))), ran 𝑡)
fin23lem17.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔𝑚 ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
fin23lem.b 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
fin23lem.c 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
fin23lem.d 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
fin23lem.e 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
Assertion
Ref Expression
fin23lem28 (𝑡:ω–1-1→V → 𝑍:ω–1-1→V)
Distinct variable groups:   𝑔,𝑖,𝑡,𝑢,𝑣,𝑥,𝑧,𝑎   𝐹,𝑎,𝑡   𝑤,𝑎,𝑥,𝑧,𝑃   𝑣,𝑎,𝑅,𝑖,𝑢   𝑈,𝑎,𝑖,𝑢,𝑣,𝑧   𝑍,𝑎   𝑔,𝑎
Allowed substitution hints:   𝑃(𝑣,𝑢,𝑡,𝑔,𝑖)   𝑄(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖,𝑎)   𝑅(𝑥,𝑧,𝑤,𝑡,𝑔)   𝑈(𝑥,𝑤,𝑡,𝑔)   𝐹(𝑥,𝑧,𝑤,𝑣,𝑢,𝑔,𝑖)   𝑍(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,𝑔,𝑖)

Proof of Theorem fin23lem28
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 fin23lem.e . . 3 𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))
2 eqif 4159 . . 3 (𝑍 = if(𝑃 ∈ Fin, (𝑡𝑅), ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)) ↔ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))))
31, 2mpbi 220 . 2 ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)))
4 difss 3770 . . . . . . . . 9 (ω ∖ 𝑃) ⊆ ω
5 ominf 8213 . . . . . . . . . 10 ¬ ω ∈ Fin
6 fin23lem.b . . . . . . . . . . . . . 14 𝑃 = {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)}
7 ssrab2 3720 . . . . . . . . . . . . . 14 {𝑣 ∈ ω ∣ ran 𝑈 ⊆ (𝑡𝑣)} ⊆ ω
86, 7eqsstri 3668 . . . . . . . . . . . . 13 𝑃 ⊆ ω
9 undif 4082 . . . . . . . . . . . . 13 (𝑃 ⊆ ω ↔ (𝑃 ∪ (ω ∖ 𝑃)) = ω)
108, 9mpbi 220 . . . . . . . . . . . 12 (𝑃 ∪ (ω ∖ 𝑃)) = ω
11 unfi 8268 . . . . . . . . . . . 12 ((𝑃 ∈ Fin ∧ (ω ∖ 𝑃) ∈ Fin) → (𝑃 ∪ (ω ∖ 𝑃)) ∈ Fin)
1210, 11syl5eqelr 2735 . . . . . . . . . . 11 ((𝑃 ∈ Fin ∧ (ω ∖ 𝑃) ∈ Fin) → ω ∈ Fin)
1312ex 449 . . . . . . . . . 10 (𝑃 ∈ Fin → ((ω ∖ 𝑃) ∈ Fin → ω ∈ Fin))
145, 13mtoi 190 . . . . . . . . 9 (𝑃 ∈ Fin → ¬ (ω ∖ 𝑃) ∈ Fin)
15 fin23lem.d . . . . . . . . . 10 𝑅 = (𝑤 ∈ ω ↦ (𝑥 ∈ (ω ∖ 𝑃)(𝑥 ∩ (ω ∖ 𝑃)) ≈ 𝑤))
1615fin23lem22 9187 . . . . . . . . 9 (((ω ∖ 𝑃) ⊆ ω ∧ ¬ (ω ∖ 𝑃) ∈ Fin) → 𝑅:ω–1-1-onto→(ω ∖ 𝑃))
174, 14, 16sylancr 696 . . . . . . . 8 (𝑃 ∈ Fin → 𝑅:ω–1-1-onto→(ω ∖ 𝑃))
1817adantl 481 . . . . . . 7 ((𝑡:ω–1-1→V ∧ 𝑃 ∈ Fin) → 𝑅:ω–1-1-onto→(ω ∖ 𝑃))
19 f1of1 6174 . . . . . . 7 (𝑅:ω–1-1-onto→(ω ∖ 𝑃) → 𝑅:ω–1-1→(ω ∖ 𝑃))
20 f1ss 6144 . . . . . . . 8 ((𝑅:ω–1-1→(ω ∖ 𝑃) ∧ (ω ∖ 𝑃) ⊆ ω) → 𝑅:ω–1-1→ω)
214, 20mpan2 707 . . . . . . 7 (𝑅:ω–1-1→(ω ∖ 𝑃) → 𝑅:ω–1-1→ω)
2218, 19, 213syl 18 . . . . . 6 ((𝑡:ω–1-1→V ∧ 𝑃 ∈ Fin) → 𝑅:ω–1-1→ω)
23 f1co 6148 . . . . . 6 ((𝑡:ω–1-1→V ∧ 𝑅:ω–1-1→ω) → (𝑡𝑅):ω–1-1→V)
2422, 23syldan 486 . . . . 5 ((𝑡:ω–1-1→V ∧ 𝑃 ∈ Fin) → (𝑡𝑅):ω–1-1→V)
25 f1eq1 6134 . . . . 5 (𝑍 = (𝑡𝑅) → (𝑍:ω–1-1→V ↔ (𝑡𝑅):ω–1-1→V))
2624, 25syl5ibrcom 237 . . . 4 ((𝑡:ω–1-1→V ∧ 𝑃 ∈ Fin) → (𝑍 = (𝑡𝑅) → 𝑍:ω–1-1→V))
2726impr 648 . . 3 ((𝑡:ω–1-1→V ∧ (𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅))) → 𝑍:ω–1-1→V)
28 fvex 6239 . . . . . . . . . . 11 (𝑡𝑧) ∈ V
29 difexg 4841 . . . . . . . . . . 11 ((𝑡𝑧) ∈ V → ((𝑡𝑧) ∖ ran 𝑈) ∈ V)
3028, 29ax-mp 5 . . . . . . . . . 10 ((𝑡𝑧) ∖ ran 𝑈) ∈ V
3130rgenw 2953 . . . . . . . . 9 𝑧𝑃 ((𝑡𝑧) ∖ ran 𝑈) ∈ V
32 eqid 2651 . . . . . . . . . 10 (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) = (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))
3332fmpt 6421 . . . . . . . . 9 (∀𝑧𝑃 ((𝑡𝑧) ∖ ran 𝑈) ∈ V ↔ (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)):𝑃⟶V)
3431, 33mpbi 220 . . . . . . . 8 (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)):𝑃⟶V
3534a1i 11 . . . . . . 7 (𝑡:ω–1-1→V → (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)):𝑃⟶V)
36 fveq2 6229 . . . . . . . . . . . . 13 (𝑧 = 𝑎 → (𝑡𝑧) = (𝑡𝑎))
3736difeq1d 3760 . . . . . . . . . . . 12 (𝑧 = 𝑎 → ((𝑡𝑧) ∖ ran 𝑈) = ((𝑡𝑎) ∖ ran 𝑈))
38 fvex 6239 . . . . . . . . . . . . 13 (𝑡𝑎) ∈ V
39 difexg 4841 . . . . . . . . . . . . 13 ((𝑡𝑎) ∈ V → ((𝑡𝑎) ∖ ran 𝑈) ∈ V)
4038, 39ax-mp 5 . . . . . . . . . . . 12 ((𝑡𝑎) ∖ ran 𝑈) ∈ V
4137, 32, 40fvmpt 6321 . . . . . . . . . . 11 (𝑎𝑃 → ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑎) = ((𝑡𝑎) ∖ ran 𝑈))
4241ad2antrl 764 . . . . . . . . . 10 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑎) = ((𝑡𝑎) ∖ ran 𝑈))
43 fveq2 6229 . . . . . . . . . . . . 13 (𝑧 = 𝑏 → (𝑡𝑧) = (𝑡𝑏))
4443difeq1d 3760 . . . . . . . . . . . 12 (𝑧 = 𝑏 → ((𝑡𝑧) ∖ ran 𝑈) = ((𝑡𝑏) ∖ ran 𝑈))
45 fvex 6239 . . . . . . . . . . . . 13 (𝑡𝑏) ∈ V
46 difexg 4841 . . . . . . . . . . . . 13 ((𝑡𝑏) ∈ V → ((𝑡𝑏) ∖ ran 𝑈) ∈ V)
4745, 46ax-mp 5 . . . . . . . . . . . 12 ((𝑡𝑏) ∖ ran 𝑈) ∈ V
4844, 32, 47fvmpt 6321 . . . . . . . . . . 11 (𝑏𝑃 → ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑏) = ((𝑡𝑏) ∖ ran 𝑈))
4948ad2antll 765 . . . . . . . . . 10 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑏) = ((𝑡𝑏) ∖ ran 𝑈))
5042, 49eqeq12d 2666 . . . . . . . . 9 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → (((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑎) = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑏) ↔ ((𝑡𝑎) ∖ ran 𝑈) = ((𝑡𝑏) ∖ ran 𝑈)))
51 uneq2 3794 . . . . . . . . . . 11 (((𝑡𝑎) ∖ ran 𝑈) = ((𝑡𝑏) ∖ ran 𝑈) → ( ran 𝑈 ∪ ((𝑡𝑎) ∖ ran 𝑈)) = ( ran 𝑈 ∪ ((𝑡𝑏) ∖ ran 𝑈)))
52 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑎 → (𝑡𝑣) = (𝑡𝑎))
5352sseq2d 3666 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑎 → ( ran 𝑈 ⊆ (𝑡𝑣) ↔ ran 𝑈 ⊆ (𝑡𝑎)))
5453, 6elrab2 3399 . . . . . . . . . . . . . . 15 (𝑎𝑃 ↔ (𝑎 ∈ ω ∧ ran 𝑈 ⊆ (𝑡𝑎)))
5554simprbi 479 . . . . . . . . . . . . . 14 (𝑎𝑃 ran 𝑈 ⊆ (𝑡𝑎))
5655ad2antrl 764 . . . . . . . . . . . . 13 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → ran 𝑈 ⊆ (𝑡𝑎))
57 undif 4082 . . . . . . . . . . . . 13 ( ran 𝑈 ⊆ (𝑡𝑎) ↔ ( ran 𝑈 ∪ ((𝑡𝑎) ∖ ran 𝑈)) = (𝑡𝑎))
5856, 57sylib 208 . . . . . . . . . . . 12 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → ( ran 𝑈 ∪ ((𝑡𝑎) ∖ ran 𝑈)) = (𝑡𝑎))
59 fveq2 6229 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑏 → (𝑡𝑣) = (𝑡𝑏))
6059sseq2d 3666 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑏 → ( ran 𝑈 ⊆ (𝑡𝑣) ↔ ran 𝑈 ⊆ (𝑡𝑏)))
6160, 6elrab2 3399 . . . . . . . . . . . . . . 15 (𝑏𝑃 ↔ (𝑏 ∈ ω ∧ ran 𝑈 ⊆ (𝑡𝑏)))
6261simprbi 479 . . . . . . . . . . . . . 14 (𝑏𝑃 ran 𝑈 ⊆ (𝑡𝑏))
6362ad2antll 765 . . . . . . . . . . . . 13 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → ran 𝑈 ⊆ (𝑡𝑏))
64 undif 4082 . . . . . . . . . . . . 13 ( ran 𝑈 ⊆ (𝑡𝑏) ↔ ( ran 𝑈 ∪ ((𝑡𝑏) ∖ ran 𝑈)) = (𝑡𝑏))
6563, 64sylib 208 . . . . . . . . . . . 12 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → ( ran 𝑈 ∪ ((𝑡𝑏) ∖ ran 𝑈)) = (𝑡𝑏))
6658, 65eqeq12d 2666 . . . . . . . . . . 11 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → (( ran 𝑈 ∪ ((𝑡𝑎) ∖ ran 𝑈)) = ( ran 𝑈 ∪ ((𝑡𝑏) ∖ ran 𝑈)) ↔ (𝑡𝑎) = (𝑡𝑏)))
6751, 66syl5ib 234 . . . . . . . . . 10 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → (((𝑡𝑎) ∖ ran 𝑈) = ((𝑡𝑏) ∖ ran 𝑈) → (𝑡𝑎) = (𝑡𝑏)))
688sseli 3632 . . . . . . . . . . . 12 (𝑎𝑃𝑎 ∈ ω)
698sseli 3632 . . . . . . . . . . . 12 (𝑏𝑃𝑏 ∈ ω)
7068, 69anim12i 589 . . . . . . . . . . 11 ((𝑎𝑃𝑏𝑃) → (𝑎 ∈ ω ∧ 𝑏 ∈ ω))
71 f1fveq 6559 . . . . . . . . . . 11 ((𝑡:ω–1-1→V ∧ (𝑎 ∈ ω ∧ 𝑏 ∈ ω)) → ((𝑡𝑎) = (𝑡𝑏) ↔ 𝑎 = 𝑏))
7270, 71sylan2 490 . . . . . . . . . 10 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → ((𝑡𝑎) = (𝑡𝑏) ↔ 𝑎 = 𝑏))
7367, 72sylibd 229 . . . . . . . . 9 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → (((𝑡𝑎) ∖ ran 𝑈) = ((𝑡𝑏) ∖ ran 𝑈) → 𝑎 = 𝑏))
7450, 73sylbid 230 . . . . . . . 8 ((𝑡:ω–1-1→V ∧ (𝑎𝑃𝑏𝑃)) → (((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑎) = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑏) → 𝑎 = 𝑏))
7574ralrimivva 3000 . . . . . . 7 (𝑡:ω–1-1→V → ∀𝑎𝑃𝑏𝑃 (((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑎) = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑏) → 𝑎 = 𝑏))
76 dff13 6552 . . . . . . 7 ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)):𝑃1-1→V ↔ ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)):𝑃⟶V ∧ ∀𝑎𝑃𝑏𝑃 (((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑎) = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈))‘𝑏) → 𝑎 = 𝑏)))
7735, 75, 76sylanbrc 699 . . . . . 6 (𝑡:ω–1-1→V → (𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)):𝑃1-1→V)
78 fin23lem.c . . . . . . . . 9 𝑄 = (𝑤 ∈ ω ↦ (𝑥𝑃 (𝑥𝑃) ≈ 𝑤))
7978fin23lem22 9187 . . . . . . . 8 ((𝑃 ⊆ ω ∧ ¬ 𝑃 ∈ Fin) → 𝑄:ω–1-1-onto𝑃)
80 f1of1 6174 . . . . . . . 8 (𝑄:ω–1-1-onto𝑃𝑄:ω–1-1𝑃)
8179, 80syl 17 . . . . . . 7 ((𝑃 ⊆ ω ∧ ¬ 𝑃 ∈ Fin) → 𝑄:ω–1-1𝑃)
828, 81mpan 706 . . . . . 6 𝑃 ∈ Fin → 𝑄:ω–1-1𝑃)
83 f1co 6148 . . . . . 6 (((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)):𝑃1-1→V ∧ 𝑄:ω–1-1𝑃) → ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄):ω–1-1→V)
8477, 82, 83syl2an 493 . . . . 5 ((𝑡:ω–1-1→V ∧ ¬ 𝑃 ∈ Fin) → ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄):ω–1-1→V)
85 f1eq1 6134 . . . . 5 (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → (𝑍:ω–1-1→V ↔ ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄):ω–1-1→V))
8684, 85syl5ibrcom 237 . . . 4 ((𝑡:ω–1-1→V ∧ ¬ 𝑃 ∈ Fin) → (𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄) → 𝑍:ω–1-1→V))
8786impr 648 . . 3 ((𝑡:ω–1-1→V ∧ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄))) → 𝑍:ω–1-1→V)
8827, 87jaodan 843 . 2 ((𝑡:ω–1-1→V ∧ ((𝑃 ∈ Fin ∧ 𝑍 = (𝑡𝑅)) ∨ (¬ 𝑃 ∈ Fin ∧ 𝑍 = ((𝑧𝑃 ↦ ((𝑡𝑧) ∖ ran 𝑈)) ∘ 𝑄)))) → 𝑍:ω–1-1→V)
893, 88mpan2 707 1 (𝑡:ω–1-1→V → 𝑍:ω–1-1→V)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   = wceq 1523   ∈ wcel 2030  {cab 2637  ∀wral 2941  {crab 2945  Vcvv 3231   ∖ cdif 3604   ∪ cun 3605   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  ifcif 4119  𝒫 cpw 4191  ∪ cuni 4468  ∩ cint 4507   class class class wbr 4685   ↦ cmpt 4762  ran crn 5144   ∘ ccom 5147  suc csuc 5763  ⟶wf 5922  –1-1→wf1 5923  –1-1-onto→wf1o 5925  ‘cfv 5926  ℩crio 6650  (class class class)co 6690   ↦ cmpt2 6692  ωcom 7107  seq𝜔cseqom 7587   ↑𝑚 cmap 7899   ≈ cen 7994  Fincfn 7997 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803 This theorem is referenced by:  fin23lem32  9204
 Copyright terms: Public domain W3C validator