![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin23lem20 | Structured version Visualization version GIF version |
Description: Lemma for fin23 9412. 𝑋 is either contained in or disjoint from all input sets. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem20 | ⊢ (𝐴 ∈ ω → (∩ ran 𝑈 ⊆ (𝑡‘𝐴) ∨ (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin23lem.a | . . . . 5 ⊢ 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
2 | 1 | fnseqom 7702 | . . . 4 ⊢ 𝑈 Fn ω |
3 | peano2 7232 | . . . 4 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | |
4 | fnfvelrn 6499 | . . . 4 ⊢ ((𝑈 Fn ω ∧ suc 𝐴 ∈ ω) → (𝑈‘suc 𝐴) ∈ ran 𝑈) | |
5 | 2, 3, 4 | sylancr 567 | . . 3 ⊢ (𝐴 ∈ ω → (𝑈‘suc 𝐴) ∈ ran 𝑈) |
6 | intss1 4624 | . . 3 ⊢ ((𝑈‘suc 𝐴) ∈ ran 𝑈 → ∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ ω → ∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴)) |
8 | 1 | fin23lem19 9359 | . 2 ⊢ (𝐴 ∈ ω → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅)) |
9 | sstr2 3757 | . . 3 ⊢ (∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) → ((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) → ∩ ran 𝑈 ⊆ (𝑡‘𝐴))) | |
10 | ssdisj 4168 | . . . 4 ⊢ ((∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) ∧ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅) → (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅) | |
11 | 10 | ex 397 | . . 3 ⊢ (∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) → (((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅ → (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅)) |
12 | 9, 11 | orim12d 945 | . 2 ⊢ (∩ ran 𝑈 ⊆ (𝑈‘suc 𝐴) → (((𝑈‘suc 𝐴) ⊆ (𝑡‘𝐴) ∨ ((𝑈‘suc 𝐴) ∩ (𝑡‘𝐴)) = ∅) → (∩ ran 𝑈 ⊆ (𝑡‘𝐴) ∨ (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅))) |
13 | 7, 8, 12 | sylc 65 | 1 ⊢ (𝐴 ∈ ω → (∩ ran 𝑈 ⊆ (𝑡‘𝐴) ∨ (∩ ran 𝑈 ∩ (𝑡‘𝐴)) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 826 = wceq 1630 ∈ wcel 2144 Vcvv 3349 ∩ cin 3720 ⊆ wss 3721 ∅c0 4061 ifcif 4223 ∪ cuni 4572 ∩ cint 4609 ran crn 5250 suc csuc 5868 Fn wfn 6026 ‘cfv 6031 ↦ cmpt2 6794 ωcom 7211 seq𝜔cseqom 7694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-seqom 7695 |
This theorem is referenced by: fin23lem30 9365 |
Copyright terms: Public domain | W3C validator |