Step | Hyp | Ref
| Expression |
1 | | fin23lem.a |
. . . . 5
⊢ 𝑈 =
seq𝜔((𝑖
∈ ω, 𝑢 ∈ V
↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
2 | 1 | fin23lem13 9366 |
. . . 4
⊢ (𝑐 ∈ ω → (𝑈‘suc 𝑐) ⊆ (𝑈‘𝑐)) |
3 | 2 | rgen 3060 |
. . 3
⊢
∀𝑐 ∈
ω (𝑈‘suc 𝑐) ⊆ (𝑈‘𝑐) |
4 | 3 | a1i 11 |
. 2
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → ∀𝑐 ∈ ω (𝑈‘suc 𝑐) ⊆ (𝑈‘𝑐)) |
5 | | fveq1 6352 |
. . . . . 6
⊢ (𝑏 = 𝑈 → (𝑏‘suc 𝑐) = (𝑈‘suc 𝑐)) |
6 | | fveq1 6352 |
. . . . . 6
⊢ (𝑏 = 𝑈 → (𝑏‘𝑐) = (𝑈‘𝑐)) |
7 | 5, 6 | sseq12d 3775 |
. . . . 5
⊢ (𝑏 = 𝑈 → ((𝑏‘suc 𝑐) ⊆ (𝑏‘𝑐) ↔ (𝑈‘suc 𝑐) ⊆ (𝑈‘𝑐))) |
8 | 7 | ralbidv 3124 |
. . . 4
⊢ (𝑏 = 𝑈 → (∀𝑐 ∈ ω (𝑏‘suc 𝑐) ⊆ (𝑏‘𝑐) ↔ ∀𝑐 ∈ ω (𝑈‘suc 𝑐) ⊆ (𝑈‘𝑐))) |
9 | | rneq 5506 |
. . . . . 6
⊢ (𝑏 = 𝑈 → ran 𝑏 = ran 𝑈) |
10 | 9 | inteqd 4632 |
. . . . 5
⊢ (𝑏 = 𝑈 → ∩ ran
𝑏 = ∩ ran 𝑈) |
11 | 10, 9 | eleq12d 2833 |
. . . 4
⊢ (𝑏 = 𝑈 → (∩ ran
𝑏 ∈ ran 𝑏 ↔ ∩ ran 𝑈 ∈ ran 𝑈)) |
12 | 8, 11 | imbi12d 333 |
. . 3
⊢ (𝑏 = 𝑈 → ((∀𝑐 ∈ ω (𝑏‘suc 𝑐) ⊆ (𝑏‘𝑐) → ∩ ran
𝑏 ∈ ran 𝑏) ↔ (∀𝑐 ∈ ω (𝑈‘suc 𝑐) ⊆ (𝑈‘𝑐) → ∩ ran
𝑈 ∈ ran 𝑈))) |
13 | | fin23lem17.f |
. . . . . 6
⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑𝑚
ω)(∀𝑥 ∈
ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran
𝑎 ∈ ran 𝑎)} |
14 | 13 | isfin3ds 9363 |
. . . . 5
⊢ (∪ ran 𝑡 ∈ 𝐹 → (∪ ran
𝑡 ∈ 𝐹 ↔ ∀𝑏 ∈ (𝒫 ∪ ran 𝑡 ↑𝑚
ω)(∀𝑐 ∈
ω (𝑏‘suc 𝑐) ⊆ (𝑏‘𝑐) → ∩ ran
𝑏 ∈ ran 𝑏))) |
15 | 14 | ibi 256 |
. . . 4
⊢ (∪ ran 𝑡 ∈ 𝐹 → ∀𝑏 ∈ (𝒫 ∪ ran 𝑡 ↑𝑚
ω)(∀𝑐 ∈
ω (𝑏‘suc 𝑐) ⊆ (𝑏‘𝑐) → ∩ ran
𝑏 ∈ ran 𝑏)) |
16 | 15 | adantr 472 |
. . 3
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → ∀𝑏 ∈ (𝒫 ∪ ran 𝑡 ↑𝑚
ω)(∀𝑐 ∈
ω (𝑏‘suc 𝑐) ⊆ (𝑏‘𝑐) → ∩ ran
𝑏 ∈ ran 𝑏)) |
17 | 1 | fnseqom 7720 |
. . . . . 6
⊢ 𝑈 Fn ω |
18 | | dffn3 6215 |
. . . . . 6
⊢ (𝑈 Fn ω ↔ 𝑈:ω⟶ran 𝑈) |
19 | 17, 18 | mpbi 220 |
. . . . 5
⊢ 𝑈:ω⟶ran 𝑈 |
20 | | pwuni 4626 |
. . . . . 6
⊢ ran 𝑈 ⊆ 𝒫 ∪ ran 𝑈 |
21 | 1 | fin23lem16 9369 |
. . . . . . 7
⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
22 | 21 | pweqi 4306 |
. . . . . 6
⊢ 𝒫
∪ ran 𝑈 = 𝒫 ∪
ran 𝑡 |
23 | 20, 22 | sseqtri 3778 |
. . . . 5
⊢ ran 𝑈 ⊆ 𝒫 ∪ ran 𝑡 |
24 | | fss 6217 |
. . . . 5
⊢ ((𝑈:ω⟶ran 𝑈 ∧ ran 𝑈 ⊆ 𝒫 ∪ ran 𝑡) → 𝑈:ω⟶𝒫 ∪ ran 𝑡) |
25 | 19, 23, 24 | mp2an 710 |
. . . 4
⊢ 𝑈:ω⟶𝒫 ∪ ran 𝑡 |
26 | | vex 3343 |
. . . . . . . 8
⊢ 𝑡 ∈ V |
27 | 26 | rnex 7266 |
. . . . . . 7
⊢ ran 𝑡 ∈ V |
28 | 27 | uniex 7119 |
. . . . . 6
⊢ ∪ ran 𝑡 ∈ V |
29 | 28 | pwex 4997 |
. . . . 5
⊢ 𝒫
∪ ran 𝑡 ∈ V |
30 | | f1f 6262 |
. . . . . . 7
⊢ (𝑡:ω–1-1→𝑉 → 𝑡:ω⟶𝑉) |
31 | | dmfex 7290 |
. . . . . . 7
⊢ ((𝑡 ∈ V ∧ 𝑡:ω⟶𝑉) → ω ∈
V) |
32 | 26, 30, 31 | sylancr 698 |
. . . . . 6
⊢ (𝑡:ω–1-1→𝑉 → ω ∈ V) |
33 | 32 | adantl 473 |
. . . . 5
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → ω ∈ V) |
34 | | elmapg 8038 |
. . . . 5
⊢
((𝒫 ∪ ran 𝑡 ∈ V ∧ ω ∈ V) →
(𝑈 ∈ (𝒫 ∪ ran 𝑡 ↑𝑚 ω) ↔
𝑈:ω⟶𝒫
∪ ran 𝑡)) |
35 | 29, 33, 34 | sylancr 698 |
. . . 4
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → (𝑈 ∈ (𝒫 ∪ ran 𝑡 ↑𝑚 ω) ↔
𝑈:ω⟶𝒫
∪ ran 𝑡)) |
36 | 25, 35 | mpbiri 248 |
. . 3
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → 𝑈 ∈ (𝒫 ∪ ran 𝑡 ↑𝑚
ω)) |
37 | 12, 16, 36 | rspcdva 3455 |
. 2
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → (∀𝑐 ∈ ω (𝑈‘suc 𝑐) ⊆ (𝑈‘𝑐) → ∩ ran
𝑈 ∈ ran 𝑈)) |
38 | 4, 37 | mpd 15 |
1
⊢ ((∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡:ω–1-1→𝑉) → ∩ ran
𝑈 ∈ ran 𝑈) |