![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin23lem16 | Structured version Visualization version GIF version |
Description: Lemma for fin23 9412. 𝑈 ranges over the original set; in particular ran 𝑈 is a set, although we do not assume here that 𝑈 is. (Contributed by Stefan O'Rear, 1-Nov-2014.) |
Ref | Expression |
---|---|
fin23lem.a | ⊢ 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) |
Ref | Expression |
---|---|
fin23lem16 | ⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unissb 4603 | . . 3 ⊢ (∪ ran 𝑈 ⊆ ∪ ran 𝑡 ↔ ∀𝑎 ∈ ran 𝑈 𝑎 ⊆ ∪ ran 𝑡) | |
2 | fin23lem.a | . . . . . 6 ⊢ 𝑈 = seq𝜔((𝑖 ∈ ω, 𝑢 ∈ V ↦ if(((𝑡‘𝑖) ∩ 𝑢) = ∅, 𝑢, ((𝑡‘𝑖) ∩ 𝑢))), ∪ ran 𝑡) | |
3 | 2 | fnseqom 7702 | . . . . 5 ⊢ 𝑈 Fn ω |
4 | fvelrnb 6385 | . . . . 5 ⊢ (𝑈 Fn ω → (𝑎 ∈ ran 𝑈 ↔ ∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝑎 ∈ ran 𝑈 ↔ ∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎) |
6 | peano1 7231 | . . . . . . . 8 ⊢ ∅ ∈ ω | |
7 | 0ss 4114 | . . . . . . . . 9 ⊢ ∅ ⊆ 𝑏 | |
8 | 2 | fin23lem15 9357 | . . . . . . . . 9 ⊢ (((𝑏 ∈ ω ∧ ∅ ∈ ω) ∧ ∅ ⊆ 𝑏) → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
9 | 7, 8 | mpan2 663 | . . . . . . . 8 ⊢ ((𝑏 ∈ ω ∧ ∅ ∈ ω) → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
10 | 6, 9 | mpan2 663 | . . . . . . 7 ⊢ (𝑏 ∈ ω → (𝑈‘𝑏) ⊆ (𝑈‘∅)) |
11 | vex 3352 | . . . . . . . . . 10 ⊢ 𝑡 ∈ V | |
12 | 11 | rnex 7246 | . . . . . . . . 9 ⊢ ran 𝑡 ∈ V |
13 | 12 | uniex 7099 | . . . . . . . 8 ⊢ ∪ ran 𝑡 ∈ V |
14 | 2 | seqom0g 7703 | . . . . . . . 8 ⊢ (∪ ran 𝑡 ∈ V → (𝑈‘∅) = ∪ ran 𝑡) |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ (𝑈‘∅) = ∪ ran 𝑡 |
16 | 10, 15 | syl6sseq 3798 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝑈‘𝑏) ⊆ ∪ ran 𝑡) |
17 | sseq1 3773 | . . . . . 6 ⊢ ((𝑈‘𝑏) = 𝑎 → ((𝑈‘𝑏) ⊆ ∪ ran 𝑡 ↔ 𝑎 ⊆ ∪ ran 𝑡)) | |
18 | 16, 17 | syl5ibcom 235 | . . . . 5 ⊢ (𝑏 ∈ ω → ((𝑈‘𝑏) = 𝑎 → 𝑎 ⊆ ∪ ran 𝑡)) |
19 | 18 | rexlimiv 3174 | . . . 4 ⊢ (∃𝑏 ∈ ω (𝑈‘𝑏) = 𝑎 → 𝑎 ⊆ ∪ ran 𝑡) |
20 | 5, 19 | sylbi 207 | . . 3 ⊢ (𝑎 ∈ ran 𝑈 → 𝑎 ⊆ ∪ ran 𝑡) |
21 | 1, 20 | mprgbir 3075 | . 2 ⊢ ∪ ran 𝑈 ⊆ ∪ ran 𝑡 |
22 | fnfvelrn 6499 | . . . . 5 ⊢ ((𝑈 Fn ω ∧ ∅ ∈ ω) → (𝑈‘∅) ∈ ran 𝑈) | |
23 | 3, 6, 22 | mp2an 664 | . . . 4 ⊢ (𝑈‘∅) ∈ ran 𝑈 |
24 | 15, 23 | eqeltrri 2846 | . . 3 ⊢ ∪ ran 𝑡 ∈ ran 𝑈 |
25 | elssuni 4601 | . . 3 ⊢ (∪ ran 𝑡 ∈ ran 𝑈 → ∪ ran 𝑡 ⊆ ∪ ran 𝑈) | |
26 | 24, 25 | ax-mp 5 | . 2 ⊢ ∪ ran 𝑡 ⊆ ∪ ran 𝑈 |
27 | 21, 26 | eqssi 3766 | 1 ⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∃wrex 3061 Vcvv 3349 ∩ cin 3720 ⊆ wss 3721 ∅c0 4061 ifcif 4223 ∪ cuni 4572 ran crn 5250 Fn wfn 6026 ‘cfv 6031 ↦ cmpt2 6794 ωcom 7211 seq𝜔cseqom 7694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-seqom 7695 |
This theorem is referenced by: fin23lem17 9361 fin23lem31 9366 |
Copyright terms: Public domain | W3C validator |