Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1aufil Structured version   Visualization version   GIF version

Theorem fin1aufil 21955
 Description: There are no definable free ultrafilters in ZFC. However, there are free ultrafilters in some choice-denying constructions. Here we show that given an amorphous set (a.k.a. a Ia-finite I-infinite set) 𝑋, the set of infinite subsets of 𝑋 is a free ultrafilter on 𝑋. (Contributed by Mario Carneiro, 20-May-2015.)
Hypothesis
Ref Expression
fin1aufil.1 𝐹 = (𝒫 𝑋 ∖ Fin)
Assertion
Ref Expression
fin1aufil (𝑋 ∈ (FinIa ∖ Fin) → (𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = ∅))

Proof of Theorem fin1aufil
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fin1aufil.1 . . . . . . 7 𝐹 = (𝒫 𝑋 ∖ Fin)
21eleq2i 2841 . . . . . 6 (𝑥𝐹𝑥 ∈ (𝒫 𝑋 ∖ Fin))
3 eldif 3731 . . . . . 6 (𝑥 ∈ (𝒫 𝑋 ∖ Fin) ↔ (𝑥 ∈ 𝒫 𝑋 ∧ ¬ 𝑥 ∈ Fin))
4 selpw 4302 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
54anbi1i 602 . . . . . 6 ((𝑥 ∈ 𝒫 𝑋 ∧ ¬ 𝑥 ∈ Fin) ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ Fin))
62, 3, 53bitri 286 . . . . 5 (𝑥𝐹 ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ Fin))
76a1i 11 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → (𝑥𝐹 ↔ (𝑥𝑋 ∧ ¬ 𝑥 ∈ Fin)))
8 elex 3361 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → 𝑋 ∈ V)
9 eldifn 3882 . . . . 5 (𝑋 ∈ (FinIa ∖ Fin) → ¬ 𝑋 ∈ Fin)
10 eleq1 2837 . . . . . . 7 (𝑥 = 𝑋 → (𝑥 ∈ Fin ↔ 𝑋 ∈ Fin))
1110notbid 307 . . . . . 6 (𝑥 = 𝑋 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑋 ∈ Fin))
1211sbcieg 3618 . . . . 5 (𝑋 ∈ (FinIa ∖ Fin) → ([𝑋 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑋 ∈ Fin))
139, 12mpbird 247 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → [𝑋 / 𝑥] ¬ 𝑥 ∈ Fin)
14 0fin 8343 . . . . . 6 ∅ ∈ Fin
15 0ex 4921 . . . . . . . 8 ∅ ∈ V
16 eleq1 2837 . . . . . . . . 9 (𝑥 = ∅ → (𝑥 ∈ Fin ↔ ∅ ∈ Fin))
1716notbid 307 . . . . . . . 8 (𝑥 = ∅ → (¬ 𝑥 ∈ Fin ↔ ¬ ∅ ∈ Fin))
1815, 17sbcie 3620 . . . . . . 7 ([∅ / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ ∅ ∈ Fin)
1918con2bii 346 . . . . . 6 (∅ ∈ Fin ↔ ¬ [∅ / 𝑥] ¬ 𝑥 ∈ Fin)
2014, 19mpbi 220 . . . . 5 ¬ [∅ / 𝑥] ¬ 𝑥 ∈ Fin
2120a1i 11 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → ¬ [∅ / 𝑥] ¬ 𝑥 ∈ Fin)
22 ssfi 8335 . . . . . . . 8 ((𝑦 ∈ Fin ∧ 𝑧𝑦) → 𝑧 ∈ Fin)
2322expcom 398 . . . . . . 7 (𝑧𝑦 → (𝑦 ∈ Fin → 𝑧 ∈ Fin))
24233ad2ant3 1128 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑦) → (𝑦 ∈ Fin → 𝑧 ∈ Fin))
2524con3d 149 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑦) → (¬ 𝑧 ∈ Fin → ¬ 𝑦 ∈ Fin))
26 vex 3352 . . . . . 6 𝑧 ∈ V
27 eleq1 2837 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 ∈ Fin ↔ 𝑧 ∈ Fin))
2827notbid 307 . . . . . 6 (𝑥 = 𝑧 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑧 ∈ Fin))
2926, 28sbcie 3620 . . . . 5 ([𝑧 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑧 ∈ Fin)
30 vex 3352 . . . . . 6 𝑦 ∈ V
31 eleq1 2837 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ Fin ↔ 𝑦 ∈ Fin))
3231notbid 307 . . . . . 6 (𝑥 = 𝑦 → (¬ 𝑥 ∈ Fin ↔ ¬ 𝑦 ∈ Fin))
3330, 32sbcie 3620 . . . . 5 ([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ 𝑦 ∈ Fin)
3425, 29, 333imtr4g 285 . . . 4 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑦) → ([𝑧 / 𝑥] ¬ 𝑥 ∈ Fin → [𝑦 / 𝑥] ¬ 𝑥 ∈ Fin))
35 eldifi 3881 . . . . . . . . 9 (𝑋 ∈ (FinIa ∖ Fin) → 𝑋 ∈ FinIa)
36 fin1ai 9316 . . . . . . . . 9 ((𝑋 ∈ FinIa𝑦𝑋) → (𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin))
3735, 36sylan 561 . . . . . . . 8 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋) → (𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin))
38373adant3 1125 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → (𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin))
39 inundif 4186 . . . . . . . . . . 11 ((𝑧𝑦) ∪ (𝑧𝑦)) = 𝑧
40 incom 3954 . . . . . . . . . . . . 13 (𝑧𝑦) = (𝑦𝑧)
41 simprl 746 . . . . . . . . . . . . 13 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑦𝑧) ∈ Fin)
4240, 41syl5eqel 2853 . . . . . . . . . . . 12 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑧𝑦) ∈ Fin)
43 simprr 748 . . . . . . . . . . . . 13 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑋𝑦) ∈ Fin)
44 simpl3 1230 . . . . . . . . . . . . . 14 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → 𝑧𝑋)
4544ssdifd 3895 . . . . . . . . . . . . 13 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑧𝑦) ⊆ (𝑋𝑦))
46 ssfi 8335 . . . . . . . . . . . . 13 (((𝑋𝑦) ∈ Fin ∧ (𝑧𝑦) ⊆ (𝑋𝑦)) → (𝑧𝑦) ∈ Fin)
4743, 45, 46syl2anc 565 . . . . . . . . . . . 12 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → (𝑧𝑦) ∈ Fin)
48 unfi 8382 . . . . . . . . . . . 12 (((𝑧𝑦) ∈ Fin ∧ (𝑧𝑦) ∈ Fin) → ((𝑧𝑦) ∪ (𝑧𝑦)) ∈ Fin)
4942, 47, 48syl2anc 565 . . . . . . . . . . 11 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → ((𝑧𝑦) ∪ (𝑧𝑦)) ∈ Fin)
5039, 49syl5eqelr 2854 . . . . . . . . . 10 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ ((𝑦𝑧) ∈ Fin ∧ (𝑋𝑦) ∈ Fin)) → 𝑧 ∈ Fin)
5150expr 444 . . . . . . . . 9 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ (𝑦𝑧) ∈ Fin) → ((𝑋𝑦) ∈ Fin → 𝑧 ∈ Fin))
5251orim2d 947 . . . . . . . 8 (((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) ∧ (𝑦𝑧) ∈ Fin) → ((𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin) → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin)))
5352ex 397 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → ((𝑦𝑧) ∈ Fin → ((𝑦 ∈ Fin ∨ (𝑋𝑦) ∈ Fin) → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin))))
5438, 53mpid 44 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → ((𝑦𝑧) ∈ Fin → (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin)))
5554con3d 149 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → (¬ (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin) → ¬ (𝑦𝑧) ∈ Fin))
5633, 29anbi12i 604 . . . . . 6 (([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) ↔ (¬ 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ Fin))
57 ioran 912 . . . . . 6 (¬ (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin) ↔ (¬ 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ Fin))
5856, 57bitr4i 267 . . . . 5 (([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) ↔ ¬ (𝑦 ∈ Fin ∨ 𝑧 ∈ Fin))
5930inex1 4930 . . . . . 6 (𝑦𝑧) ∈ V
60 eleq1 2837 . . . . . . 7 (𝑥 = (𝑦𝑧) → (𝑥 ∈ Fin ↔ (𝑦𝑧) ∈ Fin))
6160notbid 307 . . . . . 6 (𝑥 = (𝑦𝑧) → (¬ 𝑥 ∈ Fin ↔ ¬ (𝑦𝑧) ∈ Fin))
6259, 61sbcie 3620 . . . . 5 ([(𝑦𝑧) / 𝑥] ¬ 𝑥 ∈ Fin ↔ ¬ (𝑦𝑧) ∈ Fin)
6355, 58, 623imtr4g 285 . . . 4 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑦𝑋𝑧𝑋) → (([𝑦 / 𝑥] ¬ 𝑥 ∈ Fin ∧ [𝑧 / 𝑥] ¬ 𝑥 ∈ Fin) → [(𝑦𝑧) / 𝑥] ¬ 𝑥 ∈ Fin))
647, 8, 13, 21, 34, 63isfild 21881 . . 3 (𝑋 ∈ (FinIa ∖ Fin) → 𝐹 ∈ (Fil‘𝑋))
659adantr 466 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ¬ 𝑋 ∈ Fin)
66 unfi 8382 . . . . . . . 8 ((𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin) → (𝑥 ∪ (𝑋𝑥)) ∈ Fin)
67 ssun2 3926 . . . . . . . . 9 𝑋 ⊆ (𝑥𝑋)
68 undif2 4184 . . . . . . . . 9 (𝑥 ∪ (𝑋𝑥)) = (𝑥𝑋)
6967, 68sseqtr4i 3785 . . . . . . . 8 𝑋 ⊆ (𝑥 ∪ (𝑋𝑥))
70 ssfi 8335 . . . . . . . 8 (((𝑥 ∪ (𝑋𝑥)) ∈ Fin ∧ 𝑋 ⊆ (𝑥 ∪ (𝑋𝑥))) → 𝑋 ∈ Fin)
7166, 69, 70sylancl 566 . . . . . . 7 ((𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin) → 𝑋 ∈ Fin)
7265, 71nsyl 137 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ¬ (𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin))
73 ianor 910 . . . . . 6 (¬ (𝑥 ∈ Fin ∧ (𝑋𝑥) ∈ Fin) ↔ (¬ 𝑥 ∈ Fin ∨ ¬ (𝑋𝑥) ∈ Fin))
7472, 73sylib 208 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (¬ 𝑥 ∈ Fin ∨ ¬ (𝑋𝑥) ∈ Fin))
75 elpwi 4305 . . . . . . . 8 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
7675adantl 467 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → 𝑥𝑋)
776baib 517 . . . . . . 7 (𝑥𝑋 → (𝑥𝐹 ↔ ¬ 𝑥 ∈ Fin))
7876, 77syl 17 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑥𝐹 ↔ ¬ 𝑥 ∈ Fin))
791eleq2i 2841 . . . . . . 7 ((𝑋𝑥) ∈ 𝐹 ↔ (𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin))
80 difss 3886 . . . . . . . . 9 (𝑋𝑥) ⊆ 𝑋
81 elpw2g 4955 . . . . . . . . . 10 (𝑋 ∈ (FinIa ∖ Fin) → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
8281adantr 466 . . . . . . . . 9 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑋𝑥) ∈ 𝒫 𝑋 ↔ (𝑋𝑥) ⊆ 𝑋))
8380, 82mpbiri 248 . . . . . . . 8 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑋𝑥) ∈ 𝒫 𝑋)
84 eldif 3731 . . . . . . . . 9 ((𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ((𝑋𝑥) ∈ 𝒫 𝑋 ∧ ¬ (𝑋𝑥) ∈ Fin))
8584baib 517 . . . . . . . 8 ((𝑋𝑥) ∈ 𝒫 𝑋 → ((𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ¬ (𝑋𝑥) ∈ Fin))
8683, 85syl 17 . . . . . . 7 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑋𝑥) ∈ (𝒫 𝑋 ∖ Fin) ↔ ¬ (𝑋𝑥) ∈ Fin))
8779, 86syl5bb 272 . . . . . 6 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑋𝑥) ∈ 𝐹 ↔ ¬ (𝑋𝑥) ∈ Fin))
8878, 87orbi12d 883 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → ((𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹) ↔ (¬ 𝑥 ∈ Fin ∨ ¬ (𝑋𝑥) ∈ Fin)))
8974, 88mpbird 247 . . . 4 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 ∈ 𝒫 𝑋) → (𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
9089ralrimiva 3114 . . 3 (𝑋 ∈ (FinIa ∖ Fin) → ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹))
91 isufil 21926 . . 3 (𝐹 ∈ (UFil‘𝑋) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋(𝑥𝐹 ∨ (𝑋𝑥) ∈ 𝐹)))
9264, 90, 91sylanbrc 564 . 2 (𝑋 ∈ (FinIa ∖ Fin) → 𝐹 ∈ (UFil‘𝑋))
93 snfi 8193 . . . . 5 {𝑥} ∈ Fin
94 eldifn 3882 . . . . . 6 ({𝑥} ∈ (𝒫 𝑋 ∖ Fin) → ¬ {𝑥} ∈ Fin)
9594, 1eleq2s 2867 . . . . 5 ({𝑥} ∈ 𝐹 → ¬ {𝑥} ∈ Fin)
9693, 95mt2 191 . . . 4 ¬ {𝑥} ∈ 𝐹
97 uffixsn 21948 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 𝐹) → {𝑥} ∈ 𝐹)
9892, 97sylan 561 . . . . 5 ((𝑋 ∈ (FinIa ∖ Fin) ∧ 𝑥 𝐹) → {𝑥} ∈ 𝐹)
9998ex 397 . . . 4 (𝑋 ∈ (FinIa ∖ Fin) → (𝑥 𝐹 → {𝑥} ∈ 𝐹))
10096, 99mtoi 190 . . 3 (𝑋 ∈ (FinIa ∖ Fin) → ¬ 𝑥 𝐹)
101100eq0rdv 4121 . 2 (𝑋 ∈ (FinIa ∖ Fin) → 𝐹 = ∅)
10292, 101jca 495 1 (𝑋 ∈ (FinIa ∖ Fin) → (𝐹 ∈ (UFil‘𝑋) ∧ 𝐹 = ∅))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   ∨ wo 826   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144  ∀wral 3060  [wsbc 3585   ∖ cdif 3718   ∪ cun 3719   ∩ cin 3720   ⊆ wss 3721  ∅c0 4061  𝒫 cpw 4295  {csn 4314  ∩ cint 4609  ‘cfv 6031  Fincfn 8108  FinIacfin1a 9301  Filcfil 21868  UFilcufil 21922 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-fin 8112  df-fin1a 9308  df-fbas 19957  df-fg 19958  df-fil 21869  df-ufil 21924 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator