![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin1a2lem4 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 9421. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.b | ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥)) |
Ref | Expression |
---|---|
fin1a2lem4 | ⊢ 𝐸:ω–1-1→ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fin1a2lem.b | . . 3 ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥)) | |
2 | 2onn 7881 | . . . 4 ⊢ 2𝑜 ∈ ω | |
3 | nnmcl 7853 | . . . 4 ⊢ ((2𝑜 ∈ ω ∧ 𝑥 ∈ ω) → (2𝑜 ·𝑜 𝑥) ∈ ω) | |
4 | 2, 3 | mpan 708 | . . 3 ⊢ (𝑥 ∈ ω → (2𝑜 ·𝑜 𝑥) ∈ ω) |
5 | 1, 4 | fmpti 6538 | . 2 ⊢ 𝐸:ω⟶ω |
6 | 1 | fin1a2lem3 9408 | . . . . . 6 ⊢ (𝑎 ∈ ω → (𝐸‘𝑎) = (2𝑜 ·𝑜 𝑎)) |
7 | 1 | fin1a2lem3 9408 | . . . . . 6 ⊢ (𝑏 ∈ ω → (𝐸‘𝑏) = (2𝑜 ·𝑜 𝑏)) |
8 | 6, 7 | eqeqan12d 2768 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) ↔ (2𝑜 ·𝑜 𝑎) = (2𝑜 ·𝑜 𝑏))) |
9 | 2on 7729 | . . . . . . 7 ⊢ 2𝑜 ∈ On | |
10 | 9 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 2𝑜 ∈ On) |
11 | nnon 7228 | . . . . . . 7 ⊢ (𝑎 ∈ ω → 𝑎 ∈ On) | |
12 | 11 | adantr 472 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑎 ∈ On) |
13 | nnon 7228 | . . . . . . 7 ⊢ (𝑏 ∈ ω → 𝑏 ∈ On) | |
14 | 13 | adantl 473 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → 𝑏 ∈ On) |
15 | 0lt1o 7745 | . . . . . . . . 9 ⊢ ∅ ∈ 1𝑜 | |
16 | elelsuc 5950 | . . . . . . . . 9 ⊢ (∅ ∈ 1𝑜 → ∅ ∈ suc 1𝑜) | |
17 | 15, 16 | ax-mp 5 | . . . . . . . 8 ⊢ ∅ ∈ suc 1𝑜 |
18 | df-2o 7722 | . . . . . . . 8 ⊢ 2𝑜 = suc 1𝑜 | |
19 | 17, 18 | eleqtrri 2830 | . . . . . . 7 ⊢ ∅ ∈ 2𝑜 |
20 | 19 | a1i 11 | . . . . . 6 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ∅ ∈ 2𝑜) |
21 | omcan 7810 | . . . . . 6 ⊢ (((2𝑜 ∈ On ∧ 𝑎 ∈ On ∧ 𝑏 ∈ On) ∧ ∅ ∈ 2𝑜) → ((2𝑜 ·𝑜 𝑎) = (2𝑜 ·𝑜 𝑏) ↔ 𝑎 = 𝑏)) | |
22 | 10, 12, 14, 20, 21 | syl31anc 1476 | . . . . 5 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((2𝑜 ·𝑜 𝑎) = (2𝑜 ·𝑜 𝑏) ↔ 𝑎 = 𝑏)) |
23 | 8, 22 | bitrd 268 | . . . 4 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) ↔ 𝑎 = 𝑏)) |
24 | 23 | biimpd 219 | . . 3 ⊢ ((𝑎 ∈ ω ∧ 𝑏 ∈ ω) → ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏)) |
25 | 24 | rgen2a 3107 | . 2 ⊢ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏) |
26 | dff13 6667 | . 2 ⊢ (𝐸:ω–1-1→ω ↔ (𝐸:ω⟶ω ∧ ∀𝑎 ∈ ω ∀𝑏 ∈ ω ((𝐸‘𝑎) = (𝐸‘𝑏) → 𝑎 = 𝑏))) | |
27 | 5, 25, 26 | mpbir2an 993 | 1 ⊢ 𝐸:ω–1-1→ω |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∀wral 3042 ∅c0 4050 ↦ cmpt 4873 Oncon0 5876 suc csuc 5878 ⟶wf 6037 –1-1→wf1 6038 ‘cfv 6041 (class class class)co 6805 ωcom 7222 1𝑜c1o 7714 2𝑜c2o 7715 ·𝑜 comu 7719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-2o 7722 df-oadd 7725 df-omul 7726 |
This theorem is referenced by: fin1a2lem5 9410 fin1a2lem6 9411 fin1a2lem7 9412 |
Copyright terms: Public domain | W3C validator |