![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin12 | Structured version Visualization version GIF version |
Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 9438. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
fin12 | ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinII) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3352 | . . . . . . . 8 ⊢ 𝑏 ∈ V | |
2 | 1 | a1i 11 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ∈ V) |
3 | isfin1-3 9409 | . . . . . . . . 9 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ Fin ↔ ◡ [⊊] Fr 𝒫 𝐴)) | |
4 | 3 | ibi 256 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → ◡ [⊊] Fr 𝒫 𝐴) |
5 | 4 | ad2antrr 697 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ◡ [⊊] Fr 𝒫 𝐴) |
6 | elpwi 4305 | . . . . . . . 8 ⊢ (𝑏 ∈ 𝒫 𝒫 𝐴 → 𝑏 ⊆ 𝒫 𝐴) | |
7 | 6 | ad2antlr 698 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ⊆ 𝒫 𝐴) |
8 | simprl 746 | . . . . . . 7 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → 𝑏 ≠ ∅) | |
9 | fri 5211 | . . . . . . 7 ⊢ (((𝑏 ∈ V ∧ ◡ [⊊] Fr 𝒫 𝐴) ∧ (𝑏 ⊆ 𝒫 𝐴 ∧ 𝑏 ≠ ∅)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐) | |
10 | 2, 5, 7, 8, 9 | syl22anc 1476 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐) |
11 | vex 3352 | . . . . . . . . . . 11 ⊢ 𝑑 ∈ V | |
12 | vex 3352 | . . . . . . . . . . 11 ⊢ 𝑐 ∈ V | |
13 | 11, 12 | brcnv 5443 | . . . . . . . . . 10 ⊢ (𝑑◡ [⊊] 𝑐 ↔ 𝑐 [⊊] 𝑑) |
14 | 11 | brrpss 7086 | . . . . . . . . . 10 ⊢ (𝑐 [⊊] 𝑑 ↔ 𝑐 ⊊ 𝑑) |
15 | 13, 14 | bitri 264 | . . . . . . . . 9 ⊢ (𝑑◡ [⊊] 𝑐 ↔ 𝑐 ⊊ 𝑑) |
16 | 15 | notbii 309 | . . . . . . . 8 ⊢ (¬ 𝑑◡ [⊊] 𝑐 ↔ ¬ 𝑐 ⊊ 𝑑) |
17 | 16 | ralbii 3128 | . . . . . . 7 ⊢ (∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐 ↔ ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
18 | 17 | rexbii 3188 | . . . . . 6 ⊢ (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑑◡ [⊊] 𝑐 ↔ ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
19 | 10, 18 | sylib 208 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑) |
20 | sorpssuni 7092 | . . . . . 6 ⊢ ( [⊊] Or 𝑏 → (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ↔ ∪ 𝑏 ∈ 𝑏)) | |
21 | 20 | ad2antll 700 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → (∃𝑐 ∈ 𝑏 ∀𝑑 ∈ 𝑏 ¬ 𝑐 ⊊ 𝑑 ↔ ∪ 𝑏 ∈ 𝑏)) |
22 | 19, 21 | mpbid 222 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [⊊] Or 𝑏)) → ∪ 𝑏 ∈ 𝑏) |
23 | 22 | ex 397 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) → ((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏)) |
24 | 23 | ralrimiva 3114 | . 2 ⊢ (𝐴 ∈ Fin → ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏)) |
25 | isfin2 9317 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ∈ FinII ↔ ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [⊊] Or 𝑏) → ∪ 𝑏 ∈ 𝑏))) | |
26 | 24, 25 | mpbird 247 | 1 ⊢ (𝐴 ∈ Fin → 𝐴 ∈ FinII) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∈ wcel 2144 ≠ wne 2942 ∀wral 3060 ∃wrex 3061 Vcvv 3349 ⊆ wss 3721 ⊊ wpss 3722 ∅c0 4061 𝒫 cpw 4295 ∪ cuni 4572 class class class wbr 4784 Or wor 5169 Fr wfr 5205 ◡ccnv 5248 [⊊] crpss 7082 Fincfn 8108 FinIIcfin2 9302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-rpss 7083 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fin2 9309 |
This theorem is referenced by: fin1a2s 9437 fin1a2 9438 finngch 9678 |
Copyright terms: Public domain | W3C validator |