Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre Structured version   Visualization version   GIF version

Theorem fimaxre 11160
 Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fimaxre ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem fimaxre
StepHypRef Expression
1 ltso 10310 . . . 4 < Or ℝ
2 soss 5205 . . . 4 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
31, 2mpi 20 . . 3 (𝐴 ⊆ ℝ → < Or 𝐴)
4 fimaxg 8372 . . 3 (( < Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥))
53, 4syl3an1 1167 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥))
6 ssel 3738 . . . . . . . . 9 (𝐴 ⊆ ℝ → (𝑥𝐴𝑥 ∈ ℝ))
7 ssel 3738 . . . . . . . . 9 (𝐴 ⊆ ℝ → (𝑦𝐴𝑦 ∈ ℝ))
86, 7anim12d 587 . . . . . . . 8 (𝐴 ⊆ ℝ → ((𝑥𝐴𝑦𝐴) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
98imp 444 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
10 leloe 10316 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
1110ancoms 468 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦𝑥 ↔ (𝑦 < 𝑥𝑦 = 𝑥)))
12 equcom 2100 . . . . . . . . . . 11 (𝑦 = 𝑥𝑥 = 𝑦)
1312orbi2i 542 . . . . . . . . . 10 ((𝑦 < 𝑥𝑦 = 𝑥) ↔ (𝑦 < 𝑥𝑥 = 𝑦))
14 orcom 401 . . . . . . . . . 10 ((𝑦 < 𝑥𝑥 = 𝑦) ↔ (𝑥 = 𝑦𝑦 < 𝑥))
15 neor 3023 . . . . . . . . . 10 ((𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑥𝑦𝑦 < 𝑥))
1613, 14, 153bitri 286 . . . . . . . . 9 ((𝑦 < 𝑥𝑦 = 𝑥) ↔ (𝑥𝑦𝑦 < 𝑥))
1711, 16syl6bb 276 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦𝑥 ↔ (𝑥𝑦𝑦 < 𝑥)))
1817biimprd 238 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((𝑥𝑦𝑦 < 𝑥) → 𝑦𝑥))
199, 18syl 17 . . . . . 6 ((𝐴 ⊆ ℝ ∧ (𝑥𝐴𝑦𝐴)) → ((𝑥𝑦𝑦 < 𝑥) → 𝑦𝑥))
2019anassrs 683 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑦𝑦 < 𝑥) → 𝑦𝑥))
2120ralimdva 3100 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑦𝑦 < 𝑥) → ∀𝑦𝐴 𝑦𝑥))
2221reximdva 3155 . . 3 (𝐴 ⊆ ℝ → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
23223ad2ant1 1128 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (∃𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦 < 𝑥) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
245, 23mpd 15 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   ∈ wcel 2139   ≠ wne 2932  ∀wral 3050  ∃wrex 3051   ⊆ wss 3715  ∅c0 4058   class class class wbr 4804   Or wor 5186  Fincfn 8121  ℝcr 10127   < clt 10266   ≤ cle 10267 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-pre-lttri 10202  ax-pre-lttrn 10203 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7231  df-1o 7729  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272 This theorem is referenced by:  fimaxre2  11161  fiminre  11164  0ram2  15927  0ramcl  15929  prmgaplem3  15959  ballotlemfc0  30863  ballotlemfcc  30864  filbcmb  33848
 Copyright terms: Public domain W3C validator