MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimax2g Structured version   Visualization version   GIF version

Theorem fimax2g 8191
Description: A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
fimax2g ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝐴,𝑦

Proof of Theorem fimax2g
StepHypRef Expression
1 sopo 5042 . . . . 5 (𝑅 Or 𝐴𝑅 Po 𝐴)
2 cnvpo 5661 . . . . 5 (𝑅 Po 𝐴𝑅 Po 𝐴)
31, 2sylib 208 . . . 4 (𝑅 Or 𝐴𝑅 Po 𝐴)
4 frfi 8190 . . . 4 ((𝑅 Po 𝐴𝐴 ∈ Fin) → 𝑅 Fr 𝐴)
53, 4sylan 488 . . 3 ((𝑅 Or 𝐴𝐴 ∈ Fin) → 𝑅 Fr 𝐴)
653adant3 1079 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝑅 Fr 𝐴)
7 ssid 3616 . . . . . . 7 𝐴𝐴
8 fri 5066 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑅 Fr 𝐴) ∧ (𝐴𝐴𝐴 ≠ ∅)) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
97, 8mpanr1 718 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝑅 Fr 𝐴) ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
109an32s 845 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑅 Fr 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥)
11 vex 3198 . . . . . . . . 9 𝑦 ∈ V
12 vex 3198 . . . . . . . . 9 𝑥 ∈ V
1311, 12brcnv 5294 . . . . . . . 8 (𝑦𝑅𝑥𝑥𝑅𝑦)
1413notbii 310 . . . . . . 7 𝑦𝑅𝑥 ↔ ¬ 𝑥𝑅𝑦)
1514ralbii 2977 . . . . . 6 (∀𝑦𝐴 ¬ 𝑦𝑅𝑥 ↔ ∀𝑦𝐴 ¬ 𝑥𝑅𝑦)
1615rexbii 3037 . . . . 5 (∃𝑥𝐴𝑦𝐴 ¬ 𝑦𝑅𝑥 ↔ ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
1710, 16sylib 208 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) ∧ 𝑅 Fr 𝐴) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
1817ex 450 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑅 Fr 𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
19183adant1 1077 . 2 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝑅 Fr 𝐴 → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦))
206, 19mpd 15 1 ((𝑅 Or 𝐴𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥𝐴𝑦𝐴 ¬ 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036  wcel 1988  wne 2791  wral 2909  wrex 2910  wss 3567  c0 3907   class class class wbr 4644   Po wpo 5023   Or wor 5024   Fr wfr 5060  ccnv 5103  Fincfn 7940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-om 7051  df-1o 7545  df-er 7727  df-en 7941  df-fin 7944
This theorem is referenced by:  fimaxg  8192  ordunifi  8195  npomex  9803
  Copyright terms: Public domain W3C validator