![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimacnvinrn | Structured version Visualization version GIF version |
Description: Taking the converse image of a set can be limited to the range of the function used. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
fimacnvinrn | ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inpreima 6493 | . 2 ⊢ (Fun 𝐹 → (◡𝐹 “ (𝐴 ∩ ran 𝐹)) = ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹))) | |
2 | funforn 6271 | . . . . 5 ⊢ (Fun 𝐹 ↔ 𝐹:dom 𝐹–onto→ran 𝐹) | |
3 | fof 6264 | . . . . 5 ⊢ (𝐹:dom 𝐹–onto→ran 𝐹 → 𝐹:dom 𝐹⟶ran 𝐹) | |
4 | 2, 3 | sylbi 207 | . . . 4 ⊢ (Fun 𝐹 → 𝐹:dom 𝐹⟶ran 𝐹) |
5 | fimacnv 6498 | . . . 4 ⊢ (𝐹:dom 𝐹⟶ran 𝐹 → (◡𝐹 “ ran 𝐹) = dom 𝐹) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (Fun 𝐹 → (◡𝐹 “ ran 𝐹) = dom 𝐹) |
7 | 6 | ineq2d 3945 | . 2 ⊢ (Fun 𝐹 → ((◡𝐹 “ 𝐴) ∩ (◡𝐹 “ ran 𝐹)) = ((◡𝐹 “ 𝐴) ∩ dom 𝐹)) |
8 | cnvresima 5772 | . . 3 ⊢ (◡(𝐹 ↾ dom 𝐹) “ 𝐴) = ((◡𝐹 “ 𝐴) ∩ dom 𝐹) | |
9 | resdm2 5773 | . . . . . 6 ⊢ (𝐹 ↾ dom 𝐹) = ◡◡𝐹 | |
10 | funrel 6054 | . . . . . . 7 ⊢ (Fun 𝐹 → Rel 𝐹) | |
11 | dfrel2 5729 | . . . . . . 7 ⊢ (Rel 𝐹 ↔ ◡◡𝐹 = 𝐹) | |
12 | 10, 11 | sylib 208 | . . . . . 6 ⊢ (Fun 𝐹 → ◡◡𝐹 = 𝐹) |
13 | 9, 12 | syl5eq 2794 | . . . . 5 ⊢ (Fun 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹) |
14 | 13 | cnveqd 5441 | . . . 4 ⊢ (Fun 𝐹 → ◡(𝐹 ↾ dom 𝐹) = ◡𝐹) |
15 | 14 | imaeq1d 5611 | . . 3 ⊢ (Fun 𝐹 → (◡(𝐹 ↾ dom 𝐹) “ 𝐴) = (◡𝐹 “ 𝐴)) |
16 | 8, 15 | syl5eqr 2796 | . 2 ⊢ (Fun 𝐹 → ((◡𝐹 “ 𝐴) ∩ dom 𝐹) = (◡𝐹 “ 𝐴)) |
17 | 1, 7, 16 | 3eqtrrd 2787 | 1 ⊢ (Fun 𝐹 → (◡𝐹 “ 𝐴) = (◡𝐹 “ (𝐴 ∩ ran 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1620 ∩ cin 3702 ◡ccnv 5253 dom cdm 5254 ran crn 5255 ↾ cres 5256 “ cima 5257 Rel wrel 5259 Fun wfun 6031 ⟶wf 6033 –onto→wfo 6035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-br 4793 df-opab 4853 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-fo 6043 df-fv 6045 |
This theorem is referenced by: fimacnvinrn2 6500 |
Copyright terms: Public domain | W3C validator |