![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimacnvdisj | Structured version Visualization version GIF version |
Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.) |
Ref | Expression |
---|---|
fimacnvdisj | ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (◡𝐹 “ 𝐶) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5260 | . . . 4 ⊢ ran 𝐹 = dom ◡𝐹 | |
2 | frn 6193 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → ran 𝐹 ⊆ 𝐵) | |
3 | 2 | adantr 466 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → ran 𝐹 ⊆ 𝐵) |
4 | 1, 3 | syl5eqssr 3799 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → dom ◡𝐹 ⊆ 𝐵) |
5 | ssdisj 4170 | . . 3 ⊢ ((dom ◡𝐹 ⊆ 𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (dom ◡𝐹 ∩ 𝐶) = ∅) | |
6 | 4, 5 | sylancom 576 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (dom ◡𝐹 ∩ 𝐶) = ∅) |
7 | imadisj 5625 | . 2 ⊢ ((◡𝐹 “ 𝐶) = ∅ ↔ (dom ◡𝐹 ∩ 𝐶) = ∅) | |
8 | 6, 7 | sylibr 224 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝐵 ∩ 𝐶) = ∅) → (◡𝐹 “ 𝐶) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∩ cin 3722 ⊆ wss 3723 ∅c0 4063 ◡ccnv 5248 dom cdm 5249 ran crn 5250 “ cima 5252 ⟶wf 6027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-xp 5255 df-cnv 5257 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-f 6035 |
This theorem is referenced by: vdwmc2 15890 gsumval3a 18511 psrbag0 19709 mbfconstlem 23615 itg1val2 23671 ofpreima2 29806 |
Copyright terms: Public domain | W3C validator |