![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > filtop | Structured version Visualization version GIF version |
Description: The underlying set belongs to the filter. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
filtop | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | filfbas 21853 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) | |
2 | fbasne0 21835 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝑋) → 𝐹 ≠ ∅) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ≠ ∅) |
4 | n0 4074 | . . 3 ⊢ (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐹) | |
5 | filelss 21857 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ 𝑋) | |
6 | ssid 3765 | . . . . . . 7 ⊢ 𝑋 ⊆ 𝑋 | |
7 | filss 21858 | . . . . . . . . 9 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝐹 ∧ 𝑋 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋)) → 𝑋 ∈ 𝐹) | |
8 | 7 | 3exp2 1448 | . . . . . . . 8 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → (𝑋 ⊆ 𝑋 → (𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹)))) |
9 | 8 | imp 444 | . . . . . . 7 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → (𝑋 ⊆ 𝑋 → (𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹))) |
10 | 6, 9 | mpi 20 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → (𝑥 ⊆ 𝑋 → 𝑋 ∈ 𝐹)) |
11 | 5, 10 | mpd 15 | . . . . 5 ⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝐹) → 𝑋 ∈ 𝐹) |
12 | 11 | ex 449 | . . . 4 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝐹 → 𝑋 ∈ 𝐹)) |
13 | 12 | exlimdv 2010 | . . 3 ⊢ (𝐹 ∈ (Fil‘𝑋) → (∃𝑥 𝑥 ∈ 𝐹 → 𝑋 ∈ 𝐹)) |
14 | 4, 13 | syl5bi 232 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) → (𝐹 ≠ ∅ → 𝑋 ∈ 𝐹)) |
15 | 3, 14 | mpd 15 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∃wex 1853 ∈ wcel 2139 ≠ wne 2932 ⊆ wss 3715 ∅c0 4058 ‘cfv 6049 fBascfbas 19936 Filcfil 21850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fv 6057 df-fbas 19945 df-fil 21851 |
This theorem is referenced by: isfil2 21861 filn0 21867 infil 21868 filunibas 21886 filuni 21890 trfil1 21891 trfil2 21892 fgtr 21895 trfg 21896 isufil2 21913 filssufil 21917 ssufl 21923 ufileu 21924 filufint 21925 uffixfr 21928 cfinufil 21933 rnelfmlem 21957 rnelfm 21958 fmfnfmlem1 21959 fmfnfmlem2 21960 fmfnfmlem4 21962 fmfnfm 21963 flfval 21995 fclsfnflim 22032 flimfnfcls 22033 fcfval 22038 alexsublem 22049 metust 22564 cmetss 23313 minveclem4a 23401 filnetlem3 32681 filnetlem4 32682 |
Copyright terms: Public domain | W3C validator |