MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filssufilg Structured version   Visualization version   GIF version

Theorem filssufilg 21908
Description: A filter is contained in some ultrafilter. This version of filssufil 21909 contains the choice as a hypothesis (in the assumption that 𝒫 𝒫 𝑋 is well-orderable). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filssufilg ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Distinct variable groups:   𝑓,𝐹   𝑓,𝑋

Proof of Theorem filssufilg
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 479 . . . 4 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → 𝒫 𝒫 𝑋 ∈ dom card)
2 rabss 3812 . . . . 5 ({𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋 ↔ ∀𝑔 ∈ (Fil‘𝑋)(𝐹𝑔𝑔 ∈ 𝒫 𝒫 𝑋))
3 filsspw 21848 . . . . . . 7 (𝑔 ∈ (Fil‘𝑋) → 𝑔 ⊆ 𝒫 𝑋)
4 selpw 4301 . . . . . . 7 (𝑔 ∈ 𝒫 𝒫 𝑋𝑔 ⊆ 𝒫 𝑋)
53, 4sylibr 224 . . . . . 6 (𝑔 ∈ (Fil‘𝑋) → 𝑔 ∈ 𝒫 𝒫 𝑋)
65a1d 25 . . . . 5 (𝑔 ∈ (Fil‘𝑋) → (𝐹𝑔𝑔 ∈ 𝒫 𝒫 𝑋))
72, 6mprgbir 3057 . . . 4 {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋
8 ssnum 9044 . . . 4 ((𝒫 𝒫 𝑋 ∈ dom card ∧ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ⊆ 𝒫 𝒫 𝑋) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card)
91, 7, 8sylancl 697 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card)
10 ssid 3757 . . . . . . 7 𝐹𝐹
1110jctr 566 . . . . . 6 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐹))
12 sseq2 3760 . . . . . . 7 (𝑔 = 𝐹 → (𝐹𝑔𝐹𝐹))
1312elrab 3496 . . . . . 6 (𝐹 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝐹 ∈ (Fil‘𝑋) ∧ 𝐹𝐹))
1411, 13sylibr 224 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
15 ne0i 4056 . . . . 5 (𝐹 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅)
1614, 15syl 17 . . . 4 (𝐹 ∈ (Fil‘𝑋) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅)
1716adantr 472 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅)
18 simpr1 1231 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
19 ssrab 3813 . . . . . . . . . 10 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝑥 ⊆ (Fil‘𝑋) ∧ ∀𝑔𝑥 𝐹𝑔))
2018, 19sylib 208 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → (𝑥 ⊆ (Fil‘𝑋) ∧ ∀𝑔𝑥 𝐹𝑔))
2120simpld 477 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ⊆ (Fil‘𝑋))
22 simpr2 1233 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ≠ ∅)
23 simpr3 1235 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → [] Or 𝑥)
24 sorpssun 7101 . . . . . . . . . 10 (( [] Or 𝑥 ∧ (𝑔𝑥𝑥)) → (𝑔) ∈ 𝑥)
2524ralrimivva 3101 . . . . . . . . 9 ( [] Or 𝑥 → ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥)
2623, 25syl 17 . . . . . . . 8 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥)
27 filuni 21882 . . . . . . . 8 ((𝑥 ⊆ (Fil‘𝑋) ∧ 𝑥 ≠ ∅ ∧ ∀𝑔𝑥𝑥 (𝑔) ∈ 𝑥) → 𝑥 ∈ (Fil‘𝑋))
2821, 22, 26, 27syl3anc 1473 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ∈ (Fil‘𝑋))
29 n0 4066 . . . . . . . . 9 (𝑥 ≠ ∅ ↔ ∃ 𝑥)
30 ssel2 3731 . . . . . . . . . . . . . 14 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
31 sseq2 3760 . . . . . . . . . . . . . . 15 (𝑔 = → (𝐹𝑔𝐹))
3231elrab 3496 . . . . . . . . . . . . . 14 ( ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ ( ∈ (Fil‘𝑋) ∧ 𝐹))
3330, 32sylib 208 . . . . . . . . . . . . 13 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → ( ∈ (Fil‘𝑋) ∧ 𝐹))
3433simprd 482 . . . . . . . . . . . 12 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → 𝐹)
35 ssuni 4603 . . . . . . . . . . . 12 ((𝐹𝑥) → 𝐹 𝑥)
3634, 35sylancom 704 . . . . . . . . . . 11 ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥) → 𝐹 𝑥)
3736ex 449 . . . . . . . . . 10 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (𝑥𝐹 𝑥))
3837exlimdv 2002 . . . . . . . . 9 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (∃ 𝑥𝐹 𝑥))
3929, 38syl5bi 232 . . . . . . . 8 (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} → (𝑥 ≠ ∅ → 𝐹 𝑥))
4018, 22, 39sylc 65 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝐹 𝑥)
41 sseq2 3760 . . . . . . . 8 (𝑔 = 𝑥 → (𝐹𝑔𝐹 𝑥))
4241elrab 3496 . . . . . . 7 ( 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ ( 𝑥 ∈ (Fil‘𝑋) ∧ 𝐹 𝑥))
4328, 40, 42sylanbrc 701 . . . . . 6 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥)) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})
4443ex 449 . . . . 5 (𝐹 ∈ (Fil‘𝑋) → ((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
4544alrimiv 1996 . . . 4 (𝐹 ∈ (Fil‘𝑋) → ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
4645adantr 472 . . 3 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}))
47 zornn0g 9511 . . 3 (({𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∈ dom card ∧ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ≠ ∅ ∧ ∀𝑥((𝑥 ⊆ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ 𝑥 ≠ ∅ ∧ [] Or 𝑥) → 𝑥 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔})) → ∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓)
489, 17, 46, 47syl3anc 1473 . 2 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓)
49 sseq2 3760 . . . . 5 (𝑔 = 𝑓 → (𝐹𝑔𝐹𝑓))
5049elrab 3496 . . . 4 (𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ↔ (𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓))
5131ralrab 3501 . . . 4 (∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓 ↔ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓))
52 simpll 807 . . . . . 6 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝑓 ∈ (Fil‘𝑋))
53 sstr2 3743 . . . . . . . . . . 11 (𝐹𝑓 → (𝑓𝐹))
5453imim1d 82 . . . . . . . . . 10 (𝐹𝑓 → ((𝐹 → ¬ 𝑓) → (𝑓 → ¬ 𝑓)))
55 df-pss 3723 . . . . . . . . . . . . 13 (𝑓 ↔ (𝑓𝑓))
5655simplbi2 656 . . . . . . . . . . . 12 (𝑓 → (𝑓𝑓))
5756necon1bd 2942 . . . . . . . . . . 11 (𝑓 → (¬ 𝑓𝑓 = ))
5857a2i 14 . . . . . . . . . 10 ((𝑓 → ¬ 𝑓) → (𝑓𝑓 = ))
5954, 58syl6 35 . . . . . . . . 9 (𝐹𝑓 → ((𝐹 → ¬ 𝑓) → (𝑓𝑓 = )))
6059ralimdv 3093 . . . . . . . 8 (𝐹𝑓 → (∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = )))
6160imp 444 . . . . . . 7 ((𝐹𝑓 ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = ))
6261adantll 752 . . . . . 6 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = ))
63 isufil2 21905 . . . . . 6 (𝑓 ∈ (UFil‘𝑋) ↔ (𝑓 ∈ (Fil‘𝑋) ∧ ∀ ∈ (Fil‘𝑋)(𝑓𝑓 = )))
6452, 62, 63sylanbrc 701 . . . . 5 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝑓 ∈ (UFil‘𝑋))
65 simplr 809 . . . . 5 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → 𝐹𝑓)
6664, 65jca 555 . . . 4 (((𝑓 ∈ (Fil‘𝑋) ∧ 𝐹𝑓) ∧ ∀ ∈ (Fil‘𝑋)(𝐹 → ¬ 𝑓)) → (𝑓 ∈ (UFil‘𝑋) ∧ 𝐹𝑓))
6750, 51, 66syl2anb 497 . . 3 ((𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ∧ ∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓) → (𝑓 ∈ (UFil‘𝑋) ∧ 𝐹𝑓))
6867reximi2 3140 . 2 (∃𝑓 ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔}∀ ∈ {𝑔 ∈ (Fil‘𝑋) ∣ 𝐹𝑔} ¬ 𝑓 → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
6948, 68syl 17 1 ((𝐹 ∈ (Fil‘𝑋) ∧ 𝒫 𝒫 𝑋 ∈ dom card) → ∃𝑓 ∈ (UFil‘𝑋)𝐹𝑓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072  wal 1622  wex 1845  wcel 2131  wne 2924  wral 3042  wrex 3043  {crab 3046  cun 3705  wss 3707  wpss 3708  c0 4050  𝒫 cpw 4294   cuni 4580   Or wor 5178  dom cdm 5258  cfv 6041   [] crpss 7093  cardccrd 8943  Filcfil 21842  UFilcufil 21896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-rpss 7094  df-om 7223  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-en 8114  df-dom 8115  df-fin 8117  df-fi 8474  df-card 8947  df-cda 9174  df-fbas 19937  df-fg 19938  df-fil 21843  df-ufil 21898
This theorem is referenced by:  filssufil  21909  numufl  21912
  Copyright terms: Public domain W3C validator