![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > filfbas | Structured version Visualization version GIF version |
Description: A filter is a filter base. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.) |
Ref | Expression |
---|---|
filfbas | ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfil 21870 | . 2 ⊢ (𝐹 ∈ (Fil‘𝑋) ↔ (𝐹 ∈ (fBas‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝐹 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝐹))) | |
2 | 1 | simplbi 479 | 1 ⊢ (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (fBas‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2144 ≠ wne 2942 ∀wral 3060 ∩ cin 3720 ∅c0 4061 𝒫 cpw 4295 ‘cfv 6031 fBascfbas 19948 Filcfil 21868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fv 6039 df-fil 21869 |
This theorem is referenced by: 0nelfil 21872 filsspw 21874 filelss 21875 filin 21877 filtop 21878 snfbas 21889 fgfil 21898 elfilss 21899 filfinnfr 21900 fgabs 21902 filconn 21906 fgtr 21913 trfg 21914 ufilb 21929 ufilmax 21930 isufil2 21931 ssufl 21941 ufileu 21942 filufint 21943 ufilen 21953 fmfg 21972 fmufil 21982 fmid 21983 fmco 21984 ufldom 21985 hausflim 22004 flimrest 22006 flimclslem 22007 flfnei 22014 isflf 22016 flfcnp 22027 fclsrest 22047 fclsfnflim 22050 flimfnfcls 22051 isfcf 22057 cnpfcfi 22063 cnpfcf 22064 cnextcn 22090 cfilufg 22316 neipcfilu 22319 cnextucn 22326 ucnextcn 22327 cfilresi 23311 cfilres 23312 cmetss 23331 relcmpcmet 23333 cfilucfil3 23335 minveclem4a 23419 filnetlem4 32707 |
Copyright terms: Public domain | W3C validator |