MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filconn Structured version   Visualization version   GIF version

Theorem filconn 21734
Description: A filter gives rise to a connected topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filconn (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈ Conn)

Proof of Theorem filconn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
2 filunibas 21732 . . . 4 (𝐹 ∈ (Fil‘𝑋) → 𝐹 = 𝑋)
32fveq2d 6233 . . 3 (𝐹 ∈ (Fil‘𝑋) → (Fil‘ 𝐹) = (Fil‘𝑋))
41, 3eleqtrrd 2733 . 2 (𝐹 ∈ (Fil‘𝑋) → 𝐹 ∈ (Fil‘ 𝐹))
5 nss 3696 . . . . . . . 8 𝑥 ⊆ {∅} ↔ ∃𝑦(𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅}))
6 simpll 805 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝐹 ∈ (Fil‘ 𝐹))
7 ssel2 3631 . . . . . . . . . . . . . . . . 17 ((𝑥 ⊆ (𝐹 ∪ {∅}) ∧ 𝑦𝑥) → 𝑦 ∈ (𝐹 ∪ {∅}))
87adantll 750 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦𝑥) → 𝑦 ∈ (𝐹 ∪ {∅}))
9 elun 3786 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝐹 ∪ {∅}) ↔ (𝑦𝐹𝑦 ∈ {∅}))
108, 9sylib 208 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦𝑥) → (𝑦𝐹𝑦 ∈ {∅}))
1110orcomd 402 . . . . . . . . . . . . . 14 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦𝑥) → (𝑦 ∈ {∅} ∨ 𝑦𝐹))
1211ord 391 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ 𝑦𝑥) → (¬ 𝑦 ∈ {∅} → 𝑦𝐹))
1312impr 648 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑦𝐹)
14 uniss 4490 . . . . . . . . . . . . . 14 (𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 (𝐹 ∪ {∅}))
1514ad2antlr 763 . . . . . . . . . . . . 13 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑥 (𝐹 ∪ {∅}))
16 uniun 4488 . . . . . . . . . . . . . 14 (𝐹 ∪ {∅}) = ( 𝐹 {∅})
17 0ex 4823 . . . . . . . . . . . . . . . 16 ∅ ∈ V
1817unisn 4483 . . . . . . . . . . . . . . 15 {∅} = ∅
1918uneq2i 3797 . . . . . . . . . . . . . 14 ( 𝐹 {∅}) = ( 𝐹 ∪ ∅)
20 un0 4000 . . . . . . . . . . . . . 14 ( 𝐹 ∪ ∅) = 𝐹
2116, 19, 203eqtrri 2678 . . . . . . . . . . . . 13 𝐹 = (𝐹 ∪ {∅})
2215, 21syl6sseqr 3685 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑥 𝐹)
23 elssuni 4499 . . . . . . . . . . . . 13 (𝑦𝑥𝑦 𝑥)
2423ad2antrl 764 . . . . . . . . . . . 12 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑦 𝑥)
25 filss 21704 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘ 𝐹) ∧ (𝑦𝐹 𝑥 𝐹𝑦 𝑥)) → 𝑥𝐹)
266, 13, 22, 24, 25syl13anc 1368 . . . . . . . . . . 11 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑥𝐹)
27 elun1 3813 . . . . . . . . . . 11 ( 𝑥𝐹 𝑥 ∈ (𝐹 ∪ {∅}))
2826, 27syl 17 . . . . . . . . . 10 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) ∧ (𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅})) → 𝑥 ∈ (𝐹 ∪ {∅}))
2928ex 449 . . . . . . . . 9 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) → ((𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})))
3029exlimdv 1901 . . . . . . . 8 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) → (∃𝑦(𝑦𝑥 ∧ ¬ 𝑦 ∈ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})))
315, 30syl5bi 232 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) → (¬ 𝑥 ⊆ {∅} → 𝑥 ∈ (𝐹 ∪ {∅})))
32 uni0b 4495 . . . . . . . 8 ( 𝑥 = ∅ ↔ 𝑥 ⊆ {∅})
33 ssun2 3810 . . . . . . . . . 10 {∅} ⊆ (𝐹 ∪ {∅})
3417snid 4241 . . . . . . . . . 10 ∅ ∈ {∅}
3533, 34sselii 3633 . . . . . . . . 9 ∅ ∈ (𝐹 ∪ {∅})
36 eleq1 2718 . . . . . . . . 9 ( 𝑥 = ∅ → ( 𝑥 ∈ (𝐹 ∪ {∅}) ↔ ∅ ∈ (𝐹 ∪ {∅})))
3735, 36mpbiri 248 . . . . . . . 8 ( 𝑥 = ∅ → 𝑥 ∈ (𝐹 ∪ {∅}))
3832, 37sylbir 225 . . . . . . 7 (𝑥 ⊆ {∅} → 𝑥 ∈ (𝐹 ∪ {∅}))
3931, 38pm2.61d2 172 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ⊆ (𝐹 ∪ {∅})) → 𝑥 ∈ (𝐹 ∪ {∅}))
4039ex 449 . . . . 5 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})))
4140alrimiv 1895 . . . 4 (𝐹 ∈ (Fil‘ 𝐹) → ∀𝑥(𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})))
42 filin 21705 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ 𝐹)
43 elun1 3813 . . . . . . . . . 10 ((𝑥𝑦) ∈ 𝐹 → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
4442, 43syl 17 . . . . . . . . 9 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹𝑦𝐹) → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
45443expa 1284 . . . . . . . 8 (((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) ∧ 𝑦𝐹) → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
4645ralrimiva 2995 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) → ∀𝑦𝐹 (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
47 elsni 4227 . . . . . . . . 9 (𝑦 ∈ {∅} → 𝑦 = ∅)
48 ineq2 3841 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑥𝑦) = (𝑥 ∩ ∅))
49 in0 4001 . . . . . . . . . . 11 (𝑥 ∩ ∅) = ∅
5048, 49syl6eq 2701 . . . . . . . . . 10 (𝑦 = ∅ → (𝑥𝑦) = ∅)
5150, 35syl6eqel 2738 . . . . . . . . 9 (𝑦 = ∅ → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
5247, 51syl 17 . . . . . . . 8 (𝑦 ∈ {∅} → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
5352rgen 2951 . . . . . . 7 𝑦 ∈ {∅} (𝑥𝑦) ∈ (𝐹 ∪ {∅})
54 ralun 3828 . . . . . . 7 ((∀𝑦𝐹 (𝑥𝑦) ∈ (𝐹 ∪ {∅}) ∧ ∀𝑦 ∈ {∅} (𝑥𝑦) ∈ (𝐹 ∪ {∅})) → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
5546, 53, 54sylancl 695 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
5655ralrimiva 2995 . . . . 5 (𝐹 ∈ (Fil‘ 𝐹) → ∀𝑥𝐹𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
57 elsni 4227 . . . . . . 7 (𝑥 ∈ {∅} → 𝑥 = ∅)
58 ineq1 3840 . . . . . . . . . 10 (𝑥 = ∅ → (𝑥𝑦) = (∅ ∩ 𝑦))
59 0in 4002 . . . . . . . . . 10 (∅ ∩ 𝑦) = ∅
6058, 59syl6eq 2701 . . . . . . . . 9 (𝑥 = ∅ → (𝑥𝑦) = ∅)
6160, 35syl6eqel 2738 . . . . . . . 8 (𝑥 = ∅ → (𝑥𝑦) ∈ (𝐹 ∪ {∅}))
6261ralrimivw 2996 . . . . . . 7 (𝑥 = ∅ → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
6357, 62syl 17 . . . . . 6 (𝑥 ∈ {∅} → ∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
6463rgen 2951 . . . . 5 𝑥 ∈ {∅}∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅})
65 ralun 3828 . . . . 5 ((∀𝑥𝐹𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}) ∧ ∀𝑥 ∈ {∅}∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅})) → ∀𝑥 ∈ (𝐹 ∪ {∅})∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
6656, 64, 65sylancl 695 . . . 4 (𝐹 ∈ (Fil‘ 𝐹) → ∀𝑥 ∈ (𝐹 ∪ {∅})∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))
67 p0ex 4883 . . . . . 6 {∅} ∈ V
68 unexg 7001 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐹) ∧ {∅} ∈ V) → (𝐹 ∪ {∅}) ∈ V)
6967, 68mpan2 707 . . . . 5 (𝐹 ∈ (Fil‘ 𝐹) → (𝐹 ∪ {∅}) ∈ V)
70 istopg 20748 . . . . 5 ((𝐹 ∪ {∅}) ∈ V → ((𝐹 ∪ {∅}) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})) ∧ ∀𝑥 ∈ (𝐹 ∪ {∅})∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))))
7169, 70syl 17 . . . 4 (𝐹 ∈ (Fil‘ 𝐹) → ((𝐹 ∪ {∅}) ∈ Top ↔ (∀𝑥(𝑥 ⊆ (𝐹 ∪ {∅}) → 𝑥 ∈ (𝐹 ∪ {∅})) ∧ ∀𝑥 ∈ (𝐹 ∪ {∅})∀𝑦 ∈ (𝐹 ∪ {∅})(𝑥𝑦) ∈ (𝐹 ∪ {∅}))))
7241, 66, 71mpbir2and 977 . . 3 (𝐹 ∈ (Fil‘ 𝐹) → (𝐹 ∪ {∅}) ∈ Top)
7321cldopn 20883 . . . . . . . 8 (𝑥 ∈ (Clsd‘(𝐹 ∪ {∅})) → ( 𝐹𝑥) ∈ (𝐹 ∪ {∅}))
74 elun 3786 . . . . . . . 8 (( 𝐹𝑥) ∈ (𝐹 ∪ {∅}) ↔ (( 𝐹𝑥) ∈ 𝐹 ∨ ( 𝐹𝑥) ∈ {∅}))
7573, 74sylib 208 . . . . . . 7 (𝑥 ∈ (Clsd‘(𝐹 ∪ {∅})) → (( 𝐹𝑥) ∈ 𝐹 ∨ ( 𝐹𝑥) ∈ {∅}))
76 elun 3786 . . . . . . . . . 10 (𝑥 ∈ (𝐹 ∪ {∅}) ↔ (𝑥𝐹𝑥 ∈ {∅}))
77 filfbas 21699 . . . . . . . . . . . . . 14 (𝐹 ∈ (Fil‘ 𝐹) → 𝐹 ∈ (fBas‘ 𝐹))
78 fbncp 21690 . . . . . . . . . . . . . 14 ((𝐹 ∈ (fBas‘ 𝐹) ∧ 𝑥𝐹) → ¬ ( 𝐹𝑥) ∈ 𝐹)
7977, 78sylan 487 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) → ¬ ( 𝐹𝑥) ∈ 𝐹)
8079pm2.21d 118 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥𝐹) → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅))
8180ex 449 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥𝐹 → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅)))
8257a1i13 27 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥 ∈ {∅} → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅)))
8381, 82jaod 394 . . . . . . . . . 10 (𝐹 ∈ (Fil‘ 𝐹) → ((𝑥𝐹𝑥 ∈ {∅}) → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅)))
8476, 83syl5bi 232 . . . . . . . . 9 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥 ∈ (𝐹 ∪ {∅}) → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅)))
8584imp 444 . . . . . . . 8 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → (( 𝐹𝑥) ∈ 𝐹𝑥 = ∅))
86 elsni 4227 . . . . . . . . 9 (( 𝐹𝑥) ∈ {∅} → ( 𝐹𝑥) = ∅)
87 elssuni 4499 . . . . . . . . . . . 12 (𝑥 ∈ (𝐹 ∪ {∅}) → 𝑥 (𝐹 ∪ {∅}))
8887, 21syl6sseqr 3685 . . . . . . . . . . 11 (𝑥 ∈ (𝐹 ∪ {∅}) → 𝑥 𝐹)
8988adantl 481 . . . . . . . . . 10 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → 𝑥 𝐹)
90 ssdif0 3975 . . . . . . . . . . 11 ( 𝐹𝑥 ↔ ( 𝐹𝑥) = ∅)
9190biimpri 218 . . . . . . . . . 10 (( 𝐹𝑥) = ∅ → 𝐹𝑥)
92 eqss 3651 . . . . . . . . . . 11 (𝑥 = 𝐹 ↔ (𝑥 𝐹 𝐹𝑥))
9392simplbi2 654 . . . . . . . . . 10 (𝑥 𝐹 → ( 𝐹𝑥𝑥 = 𝐹))
9489, 91, 93syl2im 40 . . . . . . . . 9 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → (( 𝐹𝑥) = ∅ → 𝑥 = 𝐹))
9586, 94syl5 34 . . . . . . . 8 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → (( 𝐹𝑥) ∈ {∅} → 𝑥 = 𝐹))
9685, 95orim12d 901 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → ((( 𝐹𝑥) ∈ 𝐹 ∨ ( 𝐹𝑥) ∈ {∅}) → (𝑥 = ∅ ∨ 𝑥 = 𝐹)))
9775, 96syl5 34 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐹) ∧ 𝑥 ∈ (𝐹 ∪ {∅})) → (𝑥 ∈ (Clsd‘(𝐹 ∪ {∅})) → (𝑥 = ∅ ∨ 𝑥 = 𝐹)))
9897expimpd 628 . . . . 5 (𝐹 ∈ (Fil‘ 𝐹) → ((𝑥 ∈ (𝐹 ∪ {∅}) ∧ 𝑥 ∈ (Clsd‘(𝐹 ∪ {∅}))) → (𝑥 = ∅ ∨ 𝑥 = 𝐹)))
99 elin 3829 . . . . 5 (𝑥 ∈ ((𝐹 ∪ {∅}) ∩ (Clsd‘(𝐹 ∪ {∅}))) ↔ (𝑥 ∈ (𝐹 ∪ {∅}) ∧ 𝑥 ∈ (Clsd‘(𝐹 ∪ {∅}))))
100 vex 3234 . . . . . 6 𝑥 ∈ V
101100elpr 4231 . . . . 5 (𝑥 ∈ {∅, 𝐹} ↔ (𝑥 = ∅ ∨ 𝑥 = 𝐹))
10298, 99, 1013imtr4g 285 . . . 4 (𝐹 ∈ (Fil‘ 𝐹) → (𝑥 ∈ ((𝐹 ∪ {∅}) ∩ (Clsd‘(𝐹 ∪ {∅}))) → 𝑥 ∈ {∅, 𝐹}))
103102ssrdv 3642 . . 3 (𝐹 ∈ (Fil‘ 𝐹) → ((𝐹 ∪ {∅}) ∩ (Clsd‘(𝐹 ∪ {∅}))) ⊆ {∅, 𝐹})
10421isconn2 21265 . . 3 ((𝐹 ∪ {∅}) ∈ Conn ↔ ((𝐹 ∪ {∅}) ∈ Top ∧ ((𝐹 ∪ {∅}) ∩ (Clsd‘(𝐹 ∪ {∅}))) ⊆ {∅, 𝐹}))
10572, 103, 104sylanbrc 699 . 2 (𝐹 ∈ (Fil‘ 𝐹) → (𝐹 ∪ {∅}) ∈ Conn)
1064, 105syl 17 1 (𝐹 ∈ (Fil‘𝑋) → (𝐹 ∪ {∅}) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054  wal 1521   = wceq 1523  wex 1744  wcel 2030  wral 2941  Vcvv 3231  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948  {csn 4210  {cpr 4212   cuni 4468  cfv 5926  fBascfbas 19782  Topctop 20746  Clsdccld 20868  Conncconn 21262  Filcfil 21696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934  df-fbas 19791  df-top 20747  df-cld 20871  df-conn 21263  df-fil 21697
This theorem is referenced by:  ufildr  21782
  Copyright terms: Public domain W3C validator