![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fidomdm | Structured version Visualization version GIF version |
Description: Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
fidomdm | ⊢ (𝐹 ∈ Fin → dom 𝐹 ≼ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmresv 5749 | . 2 ⊢ dom (𝐹 ↾ V) = dom 𝐹 | |
2 | finresfin 8349 | . . . 4 ⊢ (𝐹 ∈ Fin → (𝐹 ↾ V) ∈ Fin) | |
3 | fvex 6360 | . . . . . . 7 ⊢ (1st ‘𝑥) ∈ V | |
4 | eqid 2758 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) = (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) | |
5 | 3, 4 | fnmpti 6181 | . . . . . 6 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐹 ↾ V) |
6 | dffn4 6280 | . . . . . 6 ⊢ ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) Fn (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) | |
7 | 5, 6 | mpbi 220 | . . . . 5 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) |
8 | relres 5582 | . . . . . 6 ⊢ Rel (𝐹 ↾ V) | |
9 | reldm 7384 | . . . . . 6 ⊢ (Rel (𝐹 ↾ V) → dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) | |
10 | foeq3 6272 | . . . . . 6 ⊢ (dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)) → ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)))) | |
11 | 8, 9, 10 | mp2b 10 | . . . . 5 ⊢ ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥))) |
12 | 7, 11 | mpbir 221 | . . . 4 ⊢ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) |
13 | fodomfi 8402 | . . . 4 ⊢ (((𝐹 ↾ V) ∈ Fin ∧ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st ‘𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V)) → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V)) | |
14 | 2, 12, 13 | sylancl 697 | . . 3 ⊢ (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V)) |
15 | resss 5578 | . . . 4 ⊢ (𝐹 ↾ V) ⊆ 𝐹 | |
16 | ssdomg 8165 | . . . 4 ⊢ (𝐹 ∈ Fin → ((𝐹 ↾ V) ⊆ 𝐹 → (𝐹 ↾ V) ≼ 𝐹)) | |
17 | 15, 16 | mpi 20 | . . 3 ⊢ (𝐹 ∈ Fin → (𝐹 ↾ V) ≼ 𝐹) |
18 | domtr 8172 | . . 3 ⊢ ((dom (𝐹 ↾ V) ≼ (𝐹 ↾ V) ∧ (𝐹 ↾ V) ≼ 𝐹) → dom (𝐹 ↾ V) ≼ 𝐹) | |
19 | 14, 17, 18 | syl2anc 696 | . 2 ⊢ (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ 𝐹) |
20 | 1, 19 | syl5eqbrr 4838 | 1 ⊢ (𝐹 ∈ Fin → dom 𝐹 ≼ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1630 ∈ wcel 2137 Vcvv 3338 ⊆ wss 3713 class class class wbr 4802 ↦ cmpt 4879 dom cdm 5264 ran crn 5265 ↾ cres 5266 Rel wrel 5269 Fn wfn 6042 –onto→wfo 6045 ‘cfv 6047 1st c1st 7329 ≼ cdom 8117 Fincfn 8119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-ral 3053 df-rex 3054 df-reu 3055 df-rab 3057 df-v 3340 df-sbc 3575 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-om 7229 df-1st 7331 df-2nd 7332 df-1o 7727 df-er 7909 df-en 8120 df-dom 8121 df-fin 8123 |
This theorem is referenced by: dmfi 8407 hashfun 13414 |
Copyright terms: Public domain | W3C validator |