MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fictb Structured version   Visualization version   GIF version

Theorem fictb 9105
Description: A set is countable iff its collection of finite intersections is countable. (Contributed by Jeff Hankins, 24-Aug-2009.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fictb (𝐴𝐵 → (𝐴 ≼ ω ↔ (fi‘𝐴) ≼ ω))

Proof of Theorem fictb
Dummy variables 𝑥 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brdomi 8008 . . . . 5 (𝐴 ≼ ω → ∃𝑓 𝑓:𝐴1-1→ω)
21adantl 481 . . . 4 ((𝐴𝐵𝐴 ≼ ω) → ∃𝑓 𝑓:𝐴1-1→ω)
3 reldom 8003 . . . . . 6 Rel ≼
43brrelex2i 5193 . . . . 5 (𝐴 ≼ ω → ω ∈ V)
5 omelon2 7119 . . . . . . . . . . 11 (ω ∈ V → ω ∈ On)
65ad2antlr 763 . . . . . . . . . 10 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ω ∈ On)
7 pwexg 4880 . . . . . . . . . . . . . 14 (𝐴𝐵 → 𝒫 𝐴 ∈ V)
87ad2antrr 762 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 𝐴 ∈ V)
9 inex1g 4834 . . . . . . . . . . . . 13 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
108, 9syl 17 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ∈ V)
11 difss 3770 . . . . . . . . . . . 12 ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin)
12 ssdomg 8043 . . . . . . . . . . . 12 ((𝒫 𝐴 ∩ Fin) ∈ V → (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ⊆ (𝒫 𝐴 ∩ Fin) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin)))
1310, 11, 12mpisyl 21 . . . . . . . . . . 11 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin))
14 f1f1orn 6186 . . . . . . . . . . . . . . 15 (𝑓:𝐴1-1→ω → 𝑓:𝐴1-1-onto→ran 𝑓)
1514adantl 481 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝑓:𝐴1-1-onto→ran 𝑓)
16 f1opwfi 8311 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto→ran 𝑓 → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin))
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin))
18 f1oeng 8016 . . . . . . . . . . . . 13 (((𝒫 𝐴 ∩ Fin) ∈ V ∧ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ (𝑓𝑥)):(𝒫 𝐴 ∩ Fin)–1-1-onto→(𝒫 ran 𝑓 ∩ Fin)) → (𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin))
1910, 17, 18syl2anc 694 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin))
20 pwexg 4880 . . . . . . . . . . . . . . . 16 (ω ∈ V → 𝒫 ω ∈ V)
2120ad2antlr 763 . . . . . . . . . . . . . . 15 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 ω ∈ V)
22 inex1g 4834 . . . . . . . . . . . . . . 15 (𝒫 ω ∈ V → (𝒫 ω ∩ Fin) ∈ V)
2321, 22syl 17 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ω ∩ Fin) ∈ V)
24 f1f 6139 . . . . . . . . . . . . . . . . . 18 (𝑓:𝐴1-1→ω → 𝑓:𝐴⟶ω)
2524adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝑓:𝐴⟶ω)
26 frn 6091 . . . . . . . . . . . . . . . . 17 (𝑓:𝐴⟶ω → ran 𝑓 ⊆ ω)
2725, 26syl 17 . . . . . . . . . . . . . . . 16 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ran 𝑓 ⊆ ω)
28 sspwb 4947 . . . . . . . . . . . . . . . 16 (ran 𝑓 ⊆ ω ↔ 𝒫 ran 𝑓 ⊆ 𝒫 ω)
2927, 28sylib 208 . . . . . . . . . . . . . . 15 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → 𝒫 ran 𝑓 ⊆ 𝒫 ω)
30 ssrin 3871 . . . . . . . . . . . . . . 15 (𝒫 ran 𝑓 ⊆ 𝒫 ω → (𝒫 ran 𝑓 ∩ Fin) ⊆ (𝒫 ω ∩ Fin))
3129, 30syl 17 . . . . . . . . . . . . . 14 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ⊆ (𝒫 ω ∩ Fin))
32 ssdomg 8043 . . . . . . . . . . . . . 14 ((𝒫 ω ∩ Fin) ∈ V → ((𝒫 ran 𝑓 ∩ Fin) ⊆ (𝒫 ω ∩ Fin) → (𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin)))
3323, 31, 32sylc 65 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin))
34 sneq 4220 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑧 → {𝑓} = {𝑧})
35 pweq 4194 . . . . . . . . . . . . . . . . . . . 20 (𝑓 = 𝑧 → 𝒫 𝑓 = 𝒫 𝑧)
3634, 35xpeq12d 5174 . . . . . . . . . . . . . . . . . . 19 (𝑓 = 𝑧 → ({𝑓} × 𝒫 𝑓) = ({𝑧} × 𝒫 𝑧))
3736cbviunv 4591 . . . . . . . . . . . . . . . . . 18 𝑓𝑥 ({𝑓} × 𝒫 𝑓) = 𝑧𝑥 ({𝑧} × 𝒫 𝑧)
38 iuneq1 4566 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 𝑧𝑥 ({𝑧} × 𝒫 𝑧) = 𝑧𝑦 ({𝑧} × 𝒫 𝑧))
3937, 38syl5eq 2697 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 𝑓𝑥 ({𝑓} × 𝒫 𝑓) = 𝑧𝑦 ({𝑧} × 𝒫 𝑧))
4039fveq2d 6233 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓)) = (card‘ 𝑧𝑦 ({𝑧} × 𝒫 𝑧)))
4140cbvmptv 4783 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))) = (𝑦 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑧𝑦 ({𝑧} × 𝒫 𝑧)))
4241ackbij1 9098 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))):(𝒫 ω ∩ Fin)–1-1-onto→ω
43 f1oeng 8016 . . . . . . . . . . . . . 14 (((𝒫 ω ∩ Fin) ∈ V ∧ (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑓𝑥 ({𝑓} × 𝒫 𝑓))):(𝒫 ω ∩ Fin)–1-1-onto→ω) → (𝒫 ω ∩ Fin) ≈ ω)
4423, 42, 43sylancl 695 . . . . . . . . . . . . 13 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ω ∩ Fin) ≈ ω)
45 domentr 8056 . . . . . . . . . . . . 13 (((𝒫 ran 𝑓 ∩ Fin) ≼ (𝒫 ω ∩ Fin) ∧ (𝒫 ω ∩ Fin) ≈ ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ ω)
4633, 44, 45syl2anc 694 . . . . . . . . . . . 12 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 ran 𝑓 ∩ Fin) ≼ ω)
47 endomtr 8055 . . . . . . . . . . . 12 (((𝒫 𝐴 ∩ Fin) ≈ (𝒫 ran 𝑓 ∩ Fin) ∧ (𝒫 ran 𝑓 ∩ Fin) ≼ ω) → (𝒫 𝐴 ∩ Fin) ≼ ω)
4819, 46, 47syl2anc 694 . . . . . . . . . . 11 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝒫 𝐴 ∩ Fin) ≼ ω)
49 domtr 8050 . . . . . . . . . . 11 ((((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ (𝒫 𝐴 ∩ Fin) ∧ (𝒫 𝐴 ∩ Fin) ≼ ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω)
5013, 48, 49syl2anc 694 . . . . . . . . . 10 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω)
51 ondomen 8898 . . . . . . . . . 10 ((ω ∈ On ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card)
526, 50, 51syl2anc 694 . . . . . . . . 9 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card)
53 eqid 2651 . . . . . . . . . . 11 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦) = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)
5453fifo 8379 . . . . . . . . . 10 (𝐴𝐵 → (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
5554ad2antrr 762 . . . . . . . . 9 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
56 fodomnum 8918 . . . . . . . . 9 (((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∈ dom card → ((𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦):((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅})))
5752, 55, 56sylc 65 . . . . . . . 8 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
58 domtr 8050 . . . . . . . 8 (((fi‘𝐴) ≼ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ∧ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ≼ ω) → (fi‘𝐴) ≼ ω)
5957, 50, 58syl2anc 694 . . . . . . 7 (((𝐴𝐵 ∧ ω ∈ V) ∧ 𝑓:𝐴1-1→ω) → (fi‘𝐴) ≼ ω)
6059ex 449 . . . . . 6 ((𝐴𝐵 ∧ ω ∈ V) → (𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
6160exlimdv 1901 . . . . 5 ((𝐴𝐵 ∧ ω ∈ V) → (∃𝑓 𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
624, 61sylan2 490 . . . 4 ((𝐴𝐵𝐴 ≼ ω) → (∃𝑓 𝑓:𝐴1-1→ω → (fi‘𝐴) ≼ ω))
632, 62mpd 15 . . 3 ((𝐴𝐵𝐴 ≼ ω) → (fi‘𝐴) ≼ ω)
6463ex 449 . 2 (𝐴𝐵 → (𝐴 ≼ ω → (fi‘𝐴) ≼ ω))
65 fvex 6239 . . . 4 (fi‘𝐴) ∈ V
66 ssfii 8366 . . . 4 (𝐴𝐵𝐴 ⊆ (fi‘𝐴))
67 ssdomg 8043 . . . 4 ((fi‘𝐴) ∈ V → (𝐴 ⊆ (fi‘𝐴) → 𝐴 ≼ (fi‘𝐴)))
6865, 66, 67mpsyl 68 . . 3 (𝐴𝐵𝐴 ≼ (fi‘𝐴))
69 domtr 8050 . . . 4 ((𝐴 ≼ (fi‘𝐴) ∧ (fi‘𝐴) ≼ ω) → 𝐴 ≼ ω)
7069ex 449 . . 3 (𝐴 ≼ (fi‘𝐴) → ((fi‘𝐴) ≼ ω → 𝐴 ≼ ω))
7168, 70syl 17 . 2 (𝐴𝐵 → ((fi‘𝐴) ≼ ω → 𝐴 ≼ ω))
7264, 71impbid 202 1 (𝐴𝐵 → (𝐴 ≼ ω ↔ (fi‘𝐴) ≼ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wex 1744  wcel 2030  Vcvv 3231  cdif 3604  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191  {csn 4210   cint 4507   ciun 4552   class class class wbr 4685  cmpt 4762   × cxp 5141  dom cdm 5143  ran crn 5144  cima 5146  Oncon0 5761  wf 5922  1-1wf1 5923  ontowfo 5924  1-1-ontowf1o 5925  cfv 5926  ωcom 7107  cen 7994  cdom 7995  Fincfn 7997  ficfi 8357  cardccrd 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-card 8803  df-acn 8806  df-cda 9028
This theorem is referenced by:  2ndcsb  21300
  Copyright terms: Public domain W3C validator