MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ficard Structured version   Visualization version   GIF version

Theorem ficard 9571
Description: A set is finite iff its cardinal is a natural number. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ficard (𝐴𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω))

Proof of Theorem ficard
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfi 8137 . . 3 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
2 carden 9557 . . . . 5 ((𝐴𝑉𝑥 ∈ ω) → ((card‘𝐴) = (card‘𝑥) ↔ 𝐴𝑥))
3 cardnn 8971 . . . . . . . 8 (𝑥 ∈ ω → (card‘𝑥) = 𝑥)
4 eqtr 2771 . . . . . . . . 9 (((card‘𝐴) = (card‘𝑥) ∧ (card‘𝑥) = 𝑥) → (card‘𝐴) = 𝑥)
54expcom 450 . . . . . . . 8 ((card‘𝑥) = 𝑥 → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) = 𝑥))
63, 5syl 17 . . . . . . 7 (𝑥 ∈ ω → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) = 𝑥))
7 eleq1a 2826 . . . . . . 7 (𝑥 ∈ ω → ((card‘𝐴) = 𝑥 → (card‘𝐴) ∈ ω))
86, 7syld 47 . . . . . 6 (𝑥 ∈ ω → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) ∈ ω))
98adantl 473 . . . . 5 ((𝐴𝑉𝑥 ∈ ω) → ((card‘𝐴) = (card‘𝑥) → (card‘𝐴) ∈ ω))
102, 9sylbird 250 . . . 4 ((𝐴𝑉𝑥 ∈ ω) → (𝐴𝑥 → (card‘𝐴) ∈ ω))
1110rexlimdva 3161 . . 3 (𝐴𝑉 → (∃𝑥 ∈ ω 𝐴𝑥 → (card‘𝐴) ∈ ω))
121, 11syl5bi 232 . 2 (𝐴𝑉 → (𝐴 ∈ Fin → (card‘𝐴) ∈ ω))
13 cardnn 8971 . . . . . . . 8 ((card‘𝐴) ∈ ω → (card‘(card‘𝐴)) = (card‘𝐴))
1413eqcomd 2758 . . . . . . 7 ((card‘𝐴) ∈ ω → (card‘𝐴) = (card‘(card‘𝐴)))
1514adantl 473 . . . . . 6 ((𝐴𝑉 ∧ (card‘𝐴) ∈ ω) → (card‘𝐴) = (card‘(card‘𝐴)))
16 carden 9557 . . . . . 6 ((𝐴𝑉 ∧ (card‘𝐴) ∈ ω) → ((card‘𝐴) = (card‘(card‘𝐴)) ↔ 𝐴 ≈ (card‘𝐴)))
1715, 16mpbid 222 . . . . 5 ((𝐴𝑉 ∧ (card‘𝐴) ∈ ω) → 𝐴 ≈ (card‘𝐴))
1817ex 449 . . . 4 (𝐴𝑉 → ((card‘𝐴) ∈ ω → 𝐴 ≈ (card‘𝐴)))
1918ancld 577 . . 3 (𝐴𝑉 → ((card‘𝐴) ∈ ω → ((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴))))
20 breq2 4800 . . . . 5 (𝑥 = (card‘𝐴) → (𝐴𝑥𝐴 ≈ (card‘𝐴)))
2120rspcev 3441 . . . 4 (((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)) → ∃𝑥 ∈ ω 𝐴𝑥)
2221, 1sylibr 224 . . 3 (((card‘𝐴) ∈ ω ∧ 𝐴 ≈ (card‘𝐴)) → 𝐴 ∈ Fin)
2319, 22syl6 35 . 2 (𝐴𝑉 → ((card‘𝐴) ∈ ω → 𝐴 ∈ Fin))
2412, 23impbid 202 1 (𝐴𝑉 → (𝐴 ∈ Fin ↔ (card‘𝐴) ∈ ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1624  wcel 2131  wrex 3043   class class class wbr 4796  cfv 6041  ωcom 7222  cen 8110  Fincfn 8113  cardccrd 8943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-ac2 9469
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-om 7223  df-wrecs 7568  df-recs 7629  df-er 7903  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8947  df-ac 9121
This theorem is referenced by:  cfpwsdom  9590
  Copyright terms: Public domain W3C validator