![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fib6 | Structured version Visualization version GIF version |
Description: Value of the Fibonacci sequence at index 6. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
Ref | Expression |
---|---|
fib6 | ⊢ (Fibci‘6) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5p1e6 11368 | . . 3 ⊢ (5 + 1) = 6 | |
2 | 1 | fveq2i 6357 | . 2 ⊢ (Fibci‘(5 + 1)) = (Fibci‘6) |
3 | 5nn 11401 | . . . 4 ⊢ 5 ∈ ℕ | |
4 | fibp1 30794 | . . . 4 ⊢ (5 ∈ ℕ → (Fibci‘(5 + 1)) = ((Fibci‘(5 − 1)) + (Fibci‘5))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (Fibci‘(5 + 1)) = ((Fibci‘(5 − 1)) + (Fibci‘5)) |
6 | 5cn 11313 | . . . . . . 7 ⊢ 5 ∈ ℂ | |
7 | ax-1cn 10207 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
8 | 4cn 11311 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
9 | 4p1e5 11367 | . . . . . . . 8 ⊢ (4 + 1) = 5 | |
10 | 8, 7, 9 | addcomli 10441 | . . . . . . 7 ⊢ (1 + 4) = 5 |
11 | 6, 7, 8, 10 | subaddrii 10583 | . . . . . 6 ⊢ (5 − 1) = 4 |
12 | 11 | fveq2i 6357 | . . . . 5 ⊢ (Fibci‘(5 − 1)) = (Fibci‘4) |
13 | fib4 30797 | . . . . 5 ⊢ (Fibci‘4) = 3 | |
14 | 12, 13 | eqtri 2783 | . . . 4 ⊢ (Fibci‘(5 − 1)) = 3 |
15 | fib5 30798 | . . . 4 ⊢ (Fibci‘5) = 5 | |
16 | 14, 15 | oveq12i 6827 | . . 3 ⊢ ((Fibci‘(5 − 1)) + (Fibci‘5)) = (3 + 5) |
17 | 3cn 11308 | . . . 4 ⊢ 3 ∈ ℂ | |
18 | 5p3e8 11379 | . . . 4 ⊢ (5 + 3) = 8 | |
19 | 6, 17, 18 | addcomli 10441 | . . 3 ⊢ (3 + 5) = 8 |
20 | 5, 16, 19 | 3eqtri 2787 | . 2 ⊢ (Fibci‘(5 + 1)) = 8 |
21 | 2, 20 | eqtr3i 2785 | 1 ⊢ (Fibci‘6) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2140 ‘cfv 6050 (class class class)co 6815 1c1 10150 + caddc 10152 − cmin 10479 ℕcn 11233 3c3 11284 4c4 11285 5c5 11286 6c6 11287 8c8 11289 Fibcicfib 30789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-map 8028 df-pm 8029 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-n0 11506 df-xnn0 11577 df-z 11591 df-uz 11901 df-rp 12047 df-fz 12541 df-fzo 12681 df-seq 13017 df-hash 13333 df-word 13506 df-lsw 13507 df-concat 13508 df-s1 13509 df-substr 13510 df-s2 13814 df-sseq 30777 df-fib 30790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |