![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fib0 | Structured version Visualization version GIF version |
Description: Value of the Fibonacci sequence at index 0. (Contributed by Thierry Arnoux, 25-Apr-2019.) |
Ref | Expression |
---|---|
fib0 | ⊢ (Fibci‘0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fib 30587 | . . 3 ⊢ Fibci = (〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡# “ (ℤ≥‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1))))) | |
2 | 1 | fveq1i 6230 | . 2 ⊢ (Fibci‘0) = ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡# “ (ℤ≥‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))))‘0) |
3 | nn0ex 11336 | . . . . 5 ⊢ ℕ0 ∈ V | |
4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → ℕ0 ∈ V) |
5 | 0nn0 11345 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (⊤ → 0 ∈ ℕ0) |
7 | 1nn0 11346 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → 1 ∈ ℕ0) |
9 | 6, 8 | s2cld 13662 | . . . 4 ⊢ (⊤ → 〈“01”〉 ∈ Word ℕ0) |
10 | eqid 2651 | . . . 4 ⊢ (Word ℕ0 ∩ (◡# “ (ℤ≥‘(#‘〈“01”〉)))) = (Word ℕ0 ∩ (◡# “ (ℤ≥‘(#‘〈“01”〉)))) | |
11 | fiblem 30588 | . . . . 5 ⊢ (𝑤 ∈ (Word ℕ0 ∩ (◡# “ (ℤ≥‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))):(Word ℕ0 ∩ (◡# “ (ℤ≥‘(#‘〈“01”〉))))⟶ℕ0 | |
12 | 11 | a1i 11 | . . . 4 ⊢ (⊤ → (𝑤 ∈ (Word ℕ0 ∩ (◡# “ (ℤ≥‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))):(Word ℕ0 ∩ (◡# “ (ℤ≥‘(#‘〈“01”〉))))⟶ℕ0) |
13 | 2nn 11223 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
14 | lbfzo0 12547 | . . . . . . 7 ⊢ (0 ∈ (0..^2) ↔ 2 ∈ ℕ) | |
15 | 13, 14 | mpbir 221 | . . . . . 6 ⊢ 0 ∈ (0..^2) |
16 | s2len 13680 | . . . . . . 7 ⊢ (#‘〈“01”〉) = 2 | |
17 | 16 | oveq2i 6701 | . . . . . 6 ⊢ (0..^(#‘〈“01”〉)) = (0..^2) |
18 | 15, 17 | eleqtrri 2729 | . . . . 5 ⊢ 0 ∈ (0..^(#‘〈“01”〉)) |
19 | 18 | a1i 11 | . . . 4 ⊢ (⊤ → 0 ∈ (0..^(#‘〈“01”〉))) |
20 | 4, 9, 10, 12, 19 | sseqfv1 30579 | . . 3 ⊢ (⊤ → ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡# “ (ℤ≥‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))))‘0) = (〈“01”〉‘0)) |
21 | 20 | trud 1533 | . 2 ⊢ ((〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩ (◡# “ (ℤ≥‘2))) ↦ ((𝑤‘((#‘𝑤) − 2)) + (𝑤‘((#‘𝑤) − 1)))))‘0) = (〈“01”〉‘0) |
22 | s2fv0 13678 | . . 3 ⊢ (0 ∈ ℕ0 → (〈“01”〉‘0) = 0) | |
23 | 5, 22 | ax-mp 5 | . 2 ⊢ (〈“01”〉‘0) = 0 |
24 | 2, 21, 23 | 3eqtri 2677 | 1 ⊢ (Fibci‘0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ⊤wtru 1524 ∈ wcel 2030 Vcvv 3231 ∩ cin 3606 ↦ cmpt 4762 ◡ccnv 5142 “ cima 5146 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 0cc0 9974 1c1 9975 + caddc 9977 − cmin 10304 ℕcn 11058 2c2 11108 ℕ0cn0 11330 ℤ≥cuz 11725 ..^cfzo 12504 #chash 13157 Word cword 13323 〈“cs2 13632 seqstrcsseq 30573 Fibcicfib 30586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-seq 12842 df-hash 13158 df-word 13331 df-lsw 13332 df-concat 13333 df-s1 13334 df-s2 13639 df-sseq 30574 df-fib 30587 |
This theorem is referenced by: fib2 30592 |
Copyright terms: Public domain | W3C validator |