![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fge0npnf | Structured version Visualization version GIF version |
Description: If 𝐹 maps to nonnegative reals, then +∞ is not in its range. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
fge0npnf.1 | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
Ref | Expression |
---|---|
fge0npnf | ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fge0npnf.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) | |
2 | frn 6214 | . . . . 5 ⊢ (𝐹:𝑋⟶(0[,)+∞) → ran 𝐹 ⊆ (0[,)+∞)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ (0[,)+∞)) |
4 | 3 | adantr 472 | . . 3 ⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → ran 𝐹 ⊆ (0[,)+∞)) |
5 | simpr 479 | . . 3 ⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹) | |
6 | 4, 5 | sseldd 3745 | . 2 ⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ (0[,)+∞)) |
7 | 0xr 10278 | . . . 4 ⊢ 0 ∈ ℝ* | |
8 | icoub 40255 | . . . 4 ⊢ (0 ∈ ℝ* → ¬ +∞ ∈ (0[,)+∞)) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ ¬ +∞ ∈ (0[,)+∞) |
10 | 9 | a1i 11 | . 2 ⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ (0[,)+∞)) |
11 | 6, 10 | pm2.65da 601 | 1 ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 ∈ wcel 2139 ⊆ wss 3715 ran crn 5267 ⟶wf 6045 (class class class)co 6813 0cc0 10128 +∞cpnf 10263 ℝ*cxr 10265 [,)cico 12370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-i2m1 10196 ax-1ne0 10197 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-ico 12374 |
This theorem is referenced by: sge0reval 41092 sge0fsum 41107 |
Copyright terms: Public domain | W3C validator |