MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffvresb Structured version   Visualization version   GIF version

Theorem ffvresb 6434
Description: A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
ffvresb (Fun 𝐹 → ((𝐹𝐴):𝐴𝐵 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem ffvresb
StepHypRef Expression
1 fdm 6089 . . . . . 6 ((𝐹𝐴):𝐴𝐵 → dom (𝐹𝐴) = 𝐴)
2 dmres 5454 . . . . . . 7 dom (𝐹𝐴) = (𝐴 ∩ dom 𝐹)
3 inss2 3867 . . . . . . 7 (𝐴 ∩ dom 𝐹) ⊆ dom 𝐹
42, 3eqsstri 3668 . . . . . 6 dom (𝐹𝐴) ⊆ dom 𝐹
51, 4syl6eqssr 3689 . . . . 5 ((𝐹𝐴):𝐴𝐵𝐴 ⊆ dom 𝐹)
65sselda 3636 . . . 4 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → 𝑥 ∈ dom 𝐹)
7 fvres 6245 . . . . . 6 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
87adantl 481 . . . . 5 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
9 ffvelrn 6397 . . . . 5 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → ((𝐹𝐴)‘𝑥) ∈ 𝐵)
108, 9eqeltrrd 2731 . . . 4 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
116, 10jca 553 . . 3 (((𝐹𝐴):𝐴𝐵𝑥𝐴) → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))
1211ralrimiva 2995 . 2 ((𝐹𝐴):𝐴𝐵 → ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵))
13 simpl 472 . . . . . . 7 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → 𝑥 ∈ dom 𝐹)
1413ralimi 2981 . . . . . 6 (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → ∀𝑥𝐴 𝑥 ∈ dom 𝐹)
15 dfss3 3625 . . . . . 6 (𝐴 ⊆ dom 𝐹 ↔ ∀𝑥𝐴 𝑥 ∈ dom 𝐹)
1614, 15sylibr 224 . . . . 5 (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → 𝐴 ⊆ dom 𝐹)
17 funfn 5956 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
18 fnssres 6042 . . . . . 6 ((𝐹 Fn dom 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) Fn 𝐴)
1917, 18sylanb 488 . . . . 5 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) Fn 𝐴)
2016, 19sylan2 490 . . . 4 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴) Fn 𝐴)
21 simpr 476 . . . . . . . 8 ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → (𝐹𝑥) ∈ 𝐵)
227eleq1d 2715 . . . . . . . 8 (𝑥𝐴 → (((𝐹𝐴)‘𝑥) ∈ 𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
2321, 22syl5ibr 236 . . . . . . 7 (𝑥𝐴 → ((𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → ((𝐹𝐴)‘𝑥) ∈ 𝐵))
2423ralimia 2979 . . . . . 6 (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → ∀𝑥𝐴 ((𝐹𝐴)‘𝑥) ∈ 𝐵)
2524adantl 481 . . . . 5 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → ∀𝑥𝐴 ((𝐹𝐴)‘𝑥) ∈ 𝐵)
26 fnfvrnss 6430 . . . . 5 (((𝐹𝐴) Fn 𝐴 ∧ ∀𝑥𝐴 ((𝐹𝐴)‘𝑥) ∈ 𝐵) → ran (𝐹𝐴) ⊆ 𝐵)
2720, 25, 26syl2anc 694 . . . 4 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → ran (𝐹𝐴) ⊆ 𝐵)
28 df-f 5930 . . . 4 ((𝐹𝐴):𝐴𝐵 ↔ ((𝐹𝐴) Fn 𝐴 ∧ ran (𝐹𝐴) ⊆ 𝐵))
2920, 27, 28sylanbrc 699 . . 3 ((Fun 𝐹 ∧ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)) → (𝐹𝐴):𝐴𝐵)
3029ex 449 . 2 (Fun 𝐹 → (∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵) → (𝐹𝐴):𝐴𝐵))
3112, 30impbid2 216 1 (Fun 𝐹 → ((𝐹𝐴):𝐴𝐵 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  cin 3606  wss 3607  dom cdm 5143  ran crn 5144  cres 5145  Fun wfun 5920   Fn wfn 5921  wf 5922  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934
This theorem is referenced by:  lmbr2  21111  lmff  21153  lmmbr2  23103  iscau2  23121  relogbf  24574  sseqf  30582  rpsqrtcn  30799  climrescn  40298  climxrrelem  40299  climxrre  40300  xlimxrre  40375  fourierdlem97  40738
  Copyright terms: Public domain W3C validator