![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffund | Structured version Visualization version GIF version |
Description: A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
ffund.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
ffund | ⊢ (𝜑 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffund.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffun 6161 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → Fun 𝐹) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fun wfun 5995 ⟶wf 5997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-fn 6004 df-f 6005 |
This theorem is referenced by: fofun 6229 fmptco 6511 evlslem3 19637 mdegldg 23946 uhgrfun 26081 vdegp1bi 26564 wlkreslem 26697 wlkres 26698 gneispacefun 38854 limsuppnfdlem 40353 climxrrelem 40401 climxrre 40402 liminfvalxr 40435 xlimxrre 40477 subsaliuncllem 40995 ovnovollem2 41294 preimaioomnf 41352 smfresal 41418 smfres 41420 smfco 41432 |
Copyright terms: Public domain | W3C validator |