MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffthiso Structured version   Visualization version   GIF version

Theorem ffthiso 16795
Description: A fully faithful functor reflects isomorphisms. Corollary 3.32 of [Adamek] p. 35. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthmon.b 𝐵 = (Base‘𝐶)
fthmon.h 𝐻 = (Hom ‘𝐶)
fthmon.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthmon.x (𝜑𝑋𝐵)
fthmon.y (𝜑𝑌𝐵)
fthmon.r (𝜑𝑅 ∈ (𝑋𝐻𝑌))
ffthiso.f (𝜑𝐹(𝐶 Full 𝐷)𝐺)
ffthiso.s 𝐼 = (Iso‘𝐶)
ffthiso.t 𝐽 = (Iso‘𝐷)
Assertion
Ref Expression
ffthiso (𝜑 → (𝑅 ∈ (𝑋𝐼𝑌) ↔ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))))

Proof of Theorem ffthiso
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fthmon.b . . 3 𝐵 = (Base‘𝐶)
2 ffthiso.s . . 3 𝐼 = (Iso‘𝐶)
3 ffthiso.t . . 3 𝐽 = (Iso‘𝐷)
4 fthmon.f . . . . 5 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
5 fthfunc 16773 . . . . . 6 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
65ssbri 4829 . . . . 5 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
74, 6syl 17 . . . 4 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
87adantr 466 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝐹(𝐶 Func 𝐷)𝐺)
9 fthmon.x . . . 4 (𝜑𝑋𝐵)
109adantr 466 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝑋𝐵)
11 fthmon.y . . . 4 (𝜑𝑌𝐵)
1211adantr 466 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝑌𝐵)
13 simpr 471 . . 3 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → 𝑅 ∈ (𝑋𝐼𝑌))
141, 2, 3, 8, 10, 12, 13funciso 16740 . 2 ((𝜑𝑅 ∈ (𝑋𝐼𝑌)) → ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)))
15 eqid 2770 . . . 4 (Inv‘𝐶) = (Inv‘𝐶)
16 df-br 4785 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
177, 16sylib 208 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
18 funcrcl 16729 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1917, 18syl 17 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
2019simpld 476 . . . . 5 (𝜑𝐶 ∈ Cat)
2120ad3antrrr 701 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝐶 ∈ Cat)
229ad3antrrr 701 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑋𝐵)
2311ad3antrrr 701 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑌𝐵)
24 eqid 2770 . . . . . . . . . . 11 (Base‘𝐷) = (Base‘𝐷)
25 eqid 2770 . . . . . . . . . . 11 (Inv‘𝐷) = (Inv‘𝐷)
2619simprd 477 . . . . . . . . . . 11 (𝜑𝐷 ∈ Cat)
271, 24, 7funcf1 16732 . . . . . . . . . . . 12 (𝜑𝐹:𝐵⟶(Base‘𝐷))
2827, 9ffvelrnd 6503 . . . . . . . . . . 11 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
2927, 11ffvelrnd 6503 . . . . . . . . . . 11 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐷))
3024, 25, 26, 28, 29, 3isoval 16631 . . . . . . . . . 10 (𝜑 → ((𝐹𝑋)𝐽(𝐹𝑌)) = dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
3130eleq2d 2835 . . . . . . . . 9 (𝜑 → (((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))))
3231biimpa 462 . . . . . . . 8 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
3324, 25, 26, 28, 29invfun 16630 . . . . . . . . . 10 (𝜑 → Fun ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
3433adantr 466 . . . . . . . . 9 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → Fun ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)))
35 funfvbrb 6473 . . . . . . . . 9 (Fun ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)) → (((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅))))
3634, 35syl 17 . . . . . . . 8 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → (((𝑋𝐺𝑌)‘𝑅) ∈ dom ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)) ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅))))
3732, 36mpbid 222 . . . . . . 7 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)))
3837ad2antrr 697 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)))
39 simpr 471 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓))
4038, 39breqtrd 4810 . . . . 5 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑓))
41 fthmon.h . . . . . 6 𝐻 = (Hom ‘𝐶)
424ad3antrrr 701 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝐹(𝐶 Faith 𝐷)𝐺)
43 fthmon.r . . . . . . 7 (𝜑𝑅 ∈ (𝑋𝐻𝑌))
4443ad3antrrr 701 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅 ∈ (𝑋𝐻𝑌))
45 simplr 744 . . . . . 6 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑓 ∈ (𝑌𝐻𝑋))
461, 41, 42, 22, 23, 44, 45, 15, 25fthinv 16792 . . . . 5 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → (𝑅(𝑋(Inv‘𝐶)𝑌)𝑓 ↔ ((𝑋𝐺𝑌)‘𝑅)((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))((𝑌𝐺𝑋)‘𝑓)))
4740, 46mpbird 247 . . . 4 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅(𝑋(Inv‘𝐶)𝑌)𝑓)
481, 15, 21, 22, 23, 2, 47inviso1 16632 . . 3 ((((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) ∧ 𝑓 ∈ (𝑌𝐻𝑋)) ∧ (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓)) → 𝑅 ∈ (𝑋𝐼𝑌))
49 eqid 2770 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
50 ffthiso.f . . . . 5 (𝜑𝐹(𝐶 Full 𝐷)𝐺)
5150adantr 466 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝐹(𝐶 Full 𝐷)𝐺)
5211adantr 466 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝑌𝐵)
539adantr 466 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝑋𝐵)
5424, 49, 3, 26, 29, 28isohom 16642 . . . . . 6 (𝜑 → ((𝐹𝑌)𝐽(𝐹𝑋)) ⊆ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
5554adantr 466 . . . . 5 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ((𝐹𝑌)𝐽(𝐹𝑋)) ⊆ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
5624, 25, 26, 28, 29, 3invf 16634 . . . . . 6 (𝜑 → ((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌)):((𝐹𝑋)𝐽(𝐹𝑌))⟶((𝐹𝑌)𝐽(𝐹𝑋)))
5756ffvelrnda 6502 . . . . 5 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) ∈ ((𝐹𝑌)𝐽(𝐹𝑋)))
5855, 57sseldd 3751 . . . 4 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → (((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) ∈ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
591, 49, 41, 51, 52, 53, 58fulli 16779 . . 3 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → ∃𝑓 ∈ (𝑌𝐻𝑋)(((𝐹𝑋)(Inv‘𝐷)(𝐹𝑌))‘((𝑋𝐺𝑌)‘𝑅)) = ((𝑌𝐺𝑋)‘𝑓))
6048, 59r19.29a 3225 . 2 ((𝜑 ∧ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))) → 𝑅 ∈ (𝑋𝐼𝑌))
6114, 60impbida 794 1 (𝜑 → (𝑅 ∈ (𝑋𝐼𝑌) ↔ ((𝑋𝐺𝑌)‘𝑅) ∈ ((𝐹𝑋)𝐽(𝐹𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wss 3721  cop 4320   class class class wbr 4784  dom cdm 5249  Fun wfun 6025  cfv 6031  (class class class)co 6792  Basecbs 16063  Hom chom 16159  Catccat 16531  Invcinv 16611  Isociso 16612   Func cfunc 16720   Full cful 16768   Faith cfth 16769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-1st 7314  df-2nd 7315  df-map 8010  df-ixp 8062  df-cat 16535  df-cid 16536  df-sect 16613  df-inv 16614  df-iso 16615  df-func 16724  df-full 16770  df-fth 16771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator