![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ffnaov | Structured version Visualization version GIF version |
Description: An operation maps to a class to which all values belong, analogous to ffnov 6930. (Contributed by Alexander van der Vekens, 26-May-2017.) |
Ref | Expression |
---|---|
ffnaov | ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffnafv 41775 | . 2 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶)) | |
2 | afveq2 41739 | . . . . . 6 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹'''𝑤) = (𝐹'''〈𝑥, 𝑦〉)) | |
3 | df-aov 41722 | . . . . . 6 ⊢ ((𝑥𝐹𝑦)) = (𝐹'''〈𝑥, 𝑦〉) | |
4 | 2, 3 | syl6eqr 2812 | . . . . 5 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → (𝐹'''𝑤) = ((𝑥𝐹𝑦)) ) |
5 | 4 | eleq1d 2824 | . . . 4 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ((𝐹'''𝑤) ∈ 𝐶 ↔ ((𝑥𝐹𝑦)) ∈ 𝐶)) |
6 | 5 | ralxp 5419 | . . 3 ⊢ (∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶) |
7 | 6 | anbi2i 732 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑤 ∈ (𝐴 × 𝐵)(𝐹'''𝑤) ∈ 𝐶) ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) |
8 | 1, 7 | bitri 264 | 1 ⊢ (𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑥𝐹𝑦)) ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 〈cop 4327 × cxp 5264 Fn wfn 6044 ⟶wf 6045 '''cafv 41718 ((caov 41719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-dfat 41720 df-afv 41721 df-aov 41722 |
This theorem is referenced by: faovcl 41804 |
Copyright terms: Public domain | W3C validator |