![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffdmd | Structured version Visualization version GIF version |
Description: The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
ffdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
ffdmd | ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffdmd.1 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | ffdm 6211 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:dom 𝐹⟶𝐵 ∧ dom 𝐹 ⊆ 𝐴)) |
4 | 3 | simpld 477 | 1 ⊢ (𝜑 → 𝐹:dom 𝐹⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ⊆ wss 3703 dom cdm 5254 ⟶wf 6033 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-clab 2735 df-cleq 2741 df-clel 2744 df-in 3710 df-ss 3717 df-fn 6040 df-f 6041 |
This theorem is referenced by: upgrres1 26375 umgr2v2e 26602 pliguhgr 27620 xlimmnfvlem1 40530 xlimpnfvlem1 40534 issmfd 41419 issmfdf 41421 cnfsmf 41424 issmfled 41441 issmfgtd 41444 smfsuplem1 41492 |
Copyright terms: Public domain | W3C validator |