![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fex2 | Structured version Visualization version GIF version |
Description: A function with bounded domain and range is a set. This version of fex 6654 is proven without the Axiom of Replacement. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
fex2 | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpexg 7126 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
2 | 1 | 3adant1 1125 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) |
3 | fssxp 6221 | . . 3 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 ⊆ (𝐴 × 𝐵)) | |
4 | 3 | 3ad2ant1 1128 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ⊆ (𝐴 × 𝐵)) |
5 | 2, 4 | ssexd 4957 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐹 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1072 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 × cxp 5264 ⟶wf 6045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-dm 5276 df-rn 5277 df-fun 6051 df-fn 6052 df-f 6053 |
This theorem is referenced by: elmapg 8038 f1oen2g 8140 f1dom2g 8141 dom3d 8165 domssex2 8287 domssex 8288 mapxpen 8293 oismo 8612 wdomima2g 8658 ixpiunwdom 8663 dfac8clem 9065 ac5num 9069 acni2 9079 acnlem 9081 dfac4 9155 dfac2a 9162 axdc2lem 9482 axdc4lem 9489 axcclem 9491 ac6num 9513 axdclem2 9554 addex 12043 mulex 12044 seqf1olem2 13055 seqf1o 13056 limsuple 14428 limsuplt 14429 limsupbnd1 14432 caucvgrlem 14622 prdsval 16337 prdsplusg 16340 prdsmulr 16341 prdsvsca 16342 prdsds 16346 prdshom 16349 plusffval 17468 gsumval 17492 frmdplusg 17612 vrmdfval 17614 odinf 18200 efgtf 18355 gsumval3lem1 18526 gsumval3lem2 18527 gsumval3 18528 staffval 19069 scaffval 19103 cnfldcj 19975 cnfldds 19978 xrsadd 19985 xrsmul 19986 xrsds 20011 ipffval 20215 ocvfval 20232 cnpfval 21260 iscnp2 21265 txcn 21651 fmval 21968 fmf 21970 tsmsval 22155 tsmsadd 22171 blfvalps 22409 nmfval 22614 tngnm 22676 tngngp2 22677 tngngpd 22678 tngngp 22679 nmoffn 22736 nmofval 22739 ishtpy 22992 tchex 23236 adjeu 29078 ismeas 30592 hgt750lemg 31062 isismty 33931 rrnval 33957 |
Copyright terms: Public domain | W3C validator |