![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feqresmpt | Structured version Visualization version GIF version |
Description: Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
Ref | Expression |
---|---|
feqmptd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
feqresmpt.2 | ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
Ref | Expression |
---|---|
feqresmpt | ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptd.1 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | feqresmpt.2 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) | |
3 | 1, 2 | fssresd 6211 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶⟶𝐵) |
4 | 3 | feqmptd 6391 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥))) |
5 | fvres 6348 | . . 3 ⊢ (𝑥 ∈ 𝐶 → ((𝐹 ↾ 𝐶)‘𝑥) = (𝐹‘𝑥)) | |
6 | 5 | mpteq2ia 4874 | . 2 ⊢ (𝑥 ∈ 𝐶 ↦ ((𝐹 ↾ 𝐶)‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) |
7 | 4, 6 | syl6eq 2821 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ⊆ wss 3723 ↦ cmpt 4863 ↾ cres 5251 ⟶wf 6027 ‘cfv 6031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 |
This theorem is referenced by: pwfseqlem5 9687 swrd0val 13629 gsumpt 18568 dpjidcl 18665 regsumsupp 20185 tsmsxplem2 22177 dvmulbr 23922 dvlip 23976 lhop1lem 23996 loglesqrt 24720 jensenlem1 24934 jensen 24936 amgm 24938 ushgredgedg 26343 ushgredgedgloop 26345 ushgredgedgloopOLD 26346 gsumle 30119 coinflippv 30885 fdvposlt 31017 fdvposle 31019 logdivsqrle 31068 ftc1cnnclem 33815 dvasin 33828 dvacos 33829 dvreasin 33830 dvreacos 33831 areacirclem1 33832 limsupvaluz2 40488 supcnvlimsup 40490 itgperiod 40714 fourierdlem69 40909 fourierdlem73 40913 fourierdlem74 40914 fourierdlem75 40915 fourierdlem76 40916 fourierdlem81 40921 fourierdlem85 40925 fourierdlem88 40928 fourierdlem92 40932 fourierdlem97 40937 fourierdlem100 40940 fourierdlem101 40941 fourierdlem103 40943 fourierdlem104 40944 fourierdlem107 40947 fourierdlem111 40951 fourierdlem112 40952 fouriersw 40965 sge0tsms 41114 sge0resrnlem 41137 meadjiunlem 41199 omeunle 41250 isomenndlem 41264 pfxres 41916 |
Copyright terms: Public domain | W3C validator |