![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq3d | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by AV, 1-Jan-2020.) |
Ref | Expression |
---|---|
feq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
feq3d | ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | feq3 6066 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝑋⟶𝐴 ↔ 𝐹:𝑋⟶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ⟶wf 5922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-in 3614 df-ss 3621 df-f 5930 |
This theorem is referenced by: feq123d 6072 fsn2 6443 fsng 6444 fsnunf 6492 funcres2b 16604 funcres2 16605 funcres2c 16608 catciso 16804 hofcl 16946 yonedalem4c 16964 yonedalem3b 16966 yonedainv 16968 gsumress 17323 resmhm2b 17408 pwsdiagmhm 17416 frmdup3lem 17450 frmdup3 17451 isghm 17707 frgpup3lem 18236 gsumzsubmcl 18364 dmdprd 18443 frlmup2 20186 scmatghm 20387 scmatmhm 20388 mdetdiaglem 20452 cnpf2 21102 2ndcctbss 21306 1stcelcls 21312 uptx 21476 txcn 21477 tsmssubm 21993 cnextucn 22154 pi1addf 22893 caufval 23119 equivcau 23144 lmcau 23157 plypf1 24013 coef2 24032 ulmval 24179 uhgr0vb 26012 uhgrun 26014 uhgrstrrepe 26018 isumgrs 26036 upgrun 26058 umgrun 26060 wksfval 26561 wlkres 26623 ajfval 27792 chscllem4 28627 rrhf 30170 sibff 30526 sibfof 30530 orvcval4 30650 bj-finsumval0 33277 matunitlindflem2 33536 poimirlem9 33548 isbnd3 33713 prdsbnd 33722 heibor 33750 elghomlem1OLD 33814 cnfsmf 41270 upwlksfval 42041 resmgmhm2b 42125 zrtermorngc 42326 zrtermoringc 42395 |
Copyright terms: Public domain | W3C validator |