![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq3 | Structured version Visualization version GIF version |
Description: Equality theorem for functions. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
feq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq2 3733 | . . 3 ⊢ (𝐴 = 𝐵 → (ran 𝐹 ⊆ 𝐴 ↔ ran 𝐹 ⊆ 𝐵)) | |
2 | 1 | anbi2d 742 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴) ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵))) |
3 | df-f 6005 | . 2 ⊢ (𝐹:𝐶⟶𝐴 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐴)) | |
4 | df-f 6005 | . 2 ⊢ (𝐹:𝐶⟶𝐵 ↔ (𝐹 Fn 𝐶 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3bitr4g 303 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1596 ⊆ wss 3680 ran crn 5219 Fn wfn 5996 ⟶wf 5997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-in 3687 df-ss 3694 df-f 6005 |
This theorem is referenced by: feq23 6142 feq3d 6145 fun2 6180 fconstg 6205 f1eq3 6211 mapvalg 7984 mapsn 8016 cantnff 8684 axdc4uz 12898 supcvg 14708 lmff 21228 txcn 21552 lmmbr 23177 iscmet3 23212 dvcnvrelem2 23901 itgsubstlem 23931 umgrislfupgr 26138 usgrislfuspgr 26199 wlkv0 26678 isgrpo 27581 vciOLD 27646 isvclem 27662 nmop0h 29080 sitgaddlemb 30640 sitmcl 30643 cvmliftlem15 31508 mtyf 31677 matunitlindflem1 33637 sdclem1 33771 k0004lem1 38864 mapsnd 39804 stoweidlem57 40694 |
Copyright terms: Public domain | W3C validator |