![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq1i | Structured version Visualization version GIF version |
Description: Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
feq1i.1 | ⊢ 𝐹 = 𝐺 |
Ref | Expression |
---|---|
feq1i | ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1i.1 | . 2 ⊢ 𝐹 = 𝐺 | |
2 | feq1 6187 | . 2 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1632 ⟶wf 6045 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-fun 6051 df-fn 6052 df-f 6053 |
This theorem is referenced by: ftpg 6586 fpropnf1 6687 suppsnop 7477 seqomlem2 7715 addnqf 9962 mulnqf 9963 hashfOLD 13320 isumsup2 14777 ruclem6 15163 sadcf 15377 sadadd2lem 15383 sadadd3 15385 sadaddlem 15390 smupf 15402 algrf 15488 funcoppc 16736 pmtr3ncomlem1 18093 znf1o 20102 ovolfsf 23440 ovolsf 23441 ovoliunlem1 23470 ovoliun 23473 ovoliun2 23474 voliunlem3 23520 itgss3 23780 dvexp 23915 efcn 24396 gamf 24968 basellem9 25014 axlowdimlem10 26030 wlkres 26777 1wlkdlem1 27289 vsfval 27797 ho0f 28919 opsqrlem4 29311 pjinvari 29359 fmptdF 29765 omssubaddlem 30670 omssubadd 30671 sitgclg 30713 sitgaddlemb 30719 coinfliprv 30853 plymul02 30932 signshf 30974 circum 31875 knoppcnlem8 32796 knoppcnlem11 32799 poimirlem31 33753 diophren 37879 clsf2 38926 seff 39010 binomcxplemnotnn0 39057 volicoff 40715 fourierdlem62 40888 fourierdlem80 40906 fourierdlem97 40923 carageniuncllem2 41242 0ome 41249 mapprop 42634 lindslinindimp2lem2 42758 zlmodzxzldeplem1 42799 |
Copyright terms: Public domain | W3C validator |