Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq123d Structured version   Visualization version   GIF version

Theorem feq123d 6072
 Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq12d.1 (𝜑𝐹 = 𝐺)
feq12d.2 (𝜑𝐴 = 𝐵)
feq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
feq123d (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))

Proof of Theorem feq123d
StepHypRef Expression
1 feq12d.1 . . 3 (𝜑𝐹 = 𝐺)
2 feq12d.2 . . 3 (𝜑𝐴 = 𝐵)
31, 2feq12d 6071 . 2 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
4 feq123d.3 . . 3 (𝜑𝐶 = 𝐷)
54feq3d 6070 . 2 (𝜑 → (𝐺:𝐵𝐶𝐺:𝐵𝐷))
63, 5bitrd 268 1 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1523  ⟶wf 5922 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-fun 5928  df-fn 5929  df-f 5930 This theorem is referenced by:  feq123  6073  feq23d  6078  fprg  6462  csbwrdg  13366  funcestrcsetclem8  16834  funcsetcestrclem8  16849  funcsetcestrclem9  16850  evlfcl  16909  yonedalem3a  16961  yonedalem4c  16964  yonedalem3b  16966  yonedainv  16968  iscau  23120  isuhgr  26000  uhgreq12g  26005  isuhgrop  26010  uhgrun  26014  isupgr  26024  upgrop  26034  isumgr  26035  upgrun  26058  umgrun  26060  lfuhgr1v0e  26191  wlkp1  26634  sseqf  30582  ismfs  31572  isrngo  33826  gneispace2  38747  funcringcsetcALTV2lem8  42368  funcringcsetclem8ALTV  42391
 Copyright terms: Public domain W3C validator