Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq123 Structured version   Visualization version   GIF version

Theorem feq123 6175
 Description: Equality theorem for functions. (Contributed by FL, 16-Nov-2008.)
Assertion
Ref Expression
feq123 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐺:𝐶𝐷))

Proof of Theorem feq123
StepHypRef Expression
1 simp1 1129 . 2 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → 𝐹 = 𝐺)
2 simp2 1130 . 2 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → 𝐴 = 𝐶)
3 simp3 1131 . 2 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → 𝐵 = 𝐷)
41, 2, 3feq123d 6174 1 ((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐺:𝐶𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ w3a 1070   = wceq 1630  ⟶wf 6027 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-rab 3069  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-br 4785  df-opab 4845  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-fun 6033  df-fn 6034  df-f 6035 This theorem is referenced by:  feq12i  6178  hashfxnn0  13327  mbfresfi  33781
 Copyright terms: Public domain W3C validator