Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdvneggt Structured version   Visualization version   GIF version

Theorem fdvneggt 31018
Description: Functions with a negative derivative, i.e. monotonously decreasing functions, inverse strict ordering. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
fdvposlt.d 𝐸 = (𝐶(,)𝐷)
fdvposlt.a (𝜑𝐴𝐸)
fdvposlt.b (𝜑𝐵𝐸)
fdvposlt.f (𝜑𝐹:𝐸⟶ℝ)
fdvposlt.c (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℝ))
fdvneggt.lt (𝜑𝐴 < 𝐵)
fdvneggt.1 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) < 0)
Assertion
Ref Expression
fdvneggt (𝜑 → (𝐹𝐵) < (𝐹𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem fdvneggt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fdvposlt.d . . . 4 𝐸 = (𝐶(,)𝐷)
2 fdvposlt.a . . . 4 (𝜑𝐴𝐸)
3 fdvposlt.b . . . 4 (𝜑𝐵𝐸)
4 fdvposlt.f . . . . . . 7 (𝜑𝐹:𝐸⟶ℝ)
54ffvelrnda 6502 . . . . . 6 ((𝜑𝑦𝐸) → (𝐹𝑦) ∈ ℝ)
65renegcld 10659 . . . . 5 ((𝜑𝑦𝐸) → -(𝐹𝑦) ∈ ℝ)
7 eqid 2771 . . . . 5 (𝑦𝐸 ↦ -(𝐹𝑦)) = (𝑦𝐸 ↦ -(𝐹𝑦))
86, 7fmptd 6527 . . . 4 (𝜑 → (𝑦𝐸 ↦ -(𝐹𝑦)):𝐸⟶ℝ)
9 reelprrecn 10230 . . . . . . 7 ℝ ∈ {ℝ, ℂ}
109a1i 11 . . . . . 6 (𝜑 → ℝ ∈ {ℝ, ℂ})
11 ax-resscn 10195 . . . . . . 7 ℝ ⊆ ℂ
1211, 5sseldi 3750 . . . . . 6 ((𝜑𝑦𝐸) → (𝐹𝑦) ∈ ℂ)
13 fvexd 6344 . . . . . 6 ((𝜑𝑦𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ V)
144feqmptd 6391 . . . . . . . 8 (𝜑𝐹 = (𝑦𝐸 ↦ (𝐹𝑦)))
1514oveq2d 6809 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (ℝ D (𝑦𝐸 ↦ (𝐹𝑦))))
16 fdvposlt.c . . . . . . . . 9 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℝ))
17 cncff 22916 . . . . . . . . 9 ((ℝ D 𝐹) ∈ (𝐸cn→ℝ) → (ℝ D 𝐹):𝐸⟶ℝ)
1816, 17syl 17 . . . . . . . 8 (𝜑 → (ℝ D 𝐹):𝐸⟶ℝ)
1918feqmptd 6391 . . . . . . 7 (𝜑 → (ℝ D 𝐹) = (𝑦𝐸 ↦ ((ℝ D 𝐹)‘𝑦)))
2015, 19eqtr3d 2807 . . . . . 6 (𝜑 → (ℝ D (𝑦𝐸 ↦ (𝐹𝑦))) = (𝑦𝐸 ↦ ((ℝ D 𝐹)‘𝑦)))
2110, 12, 13, 20dvmptneg 23949 . . . . 5 (𝜑 → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
2218ffvelrnda 6502 . . . . . . . 8 ((𝜑𝑦𝐸) → ((ℝ D 𝐹)‘𝑦) ∈ ℝ)
2322renegcld 10659 . . . . . . 7 ((𝜑𝑦𝐸) → -((ℝ D 𝐹)‘𝑦) ∈ ℝ)
24 eqid 2771 . . . . . . 7 (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))
2523, 24fmptd 6527 . . . . . 6 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ)
26 ssid 3773 . . . . . . . . . 10 ℂ ⊆ ℂ
27 cncfss 22922 . . . . . . . . . 10 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝐸cn→ℝ) ⊆ (𝐸cn→ℂ))
2811, 26, 27mp2an 672 . . . . . . . . 9 (𝐸cn→ℝ) ⊆ (𝐸cn→ℂ)
2928, 16sseldi 3750 . . . . . . . 8 (𝜑 → (ℝ D 𝐹) ∈ (𝐸cn→ℂ))
3024negfcncf 22942 . . . . . . . 8 ((ℝ D 𝐹) ∈ (𝐸cn→ℂ) → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ))
3129, 30syl 17 . . . . . . 7 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ))
32 cncffvrn 22921 . . . . . . 7 ((ℝ ⊆ ℂ ∧ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℂ)) → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ) ↔ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ))
3311, 31, 32sylancr 575 . . . . . 6 (𝜑 → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ) ↔ (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)):𝐸⟶ℝ))
3425, 33mpbird 247 . . . . 5 (𝜑 → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) ∈ (𝐸cn→ℝ))
3521, 34eqeltrd 2850 . . . 4 (𝜑 → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) ∈ (𝐸cn→ℝ))
36 fdvneggt.lt . . . 4 (𝜑𝐴 < 𝐵)
37 fdvneggt.1 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) < 0)
3818adantr 466 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D 𝐹):𝐸⟶ℝ)
39 ioossicc 12464 . . . . . . . . . . 11 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
4039a1i 11 . . . . . . . . . 10 (𝜑 → (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵))
411, 2, 3fct2relem 31015 . . . . . . . . . 10 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)
4240, 41sstrd 3762 . . . . . . . . 9 (𝜑 → (𝐴(,)𝐵) ⊆ 𝐸)
4342sselda 3752 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 𝑥𝐸)
4438, 43ffvelrnd 6503 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑥) ∈ ℝ)
4544lt0neg1d 10799 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (((ℝ D 𝐹)‘𝑥) < 0 ↔ 0 < -((ℝ D 𝐹)‘𝑥)))
4637, 45mpbid 222 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < -((ℝ D 𝐹)‘𝑥))
4721adantr 466 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (ℝ D (𝑦𝐸 ↦ -(𝐹𝑦))) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
4847fveq1d 6334 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥) = ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥))
4924a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)) = (𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦)))
50 simpr 471 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → 𝑦 = 𝑥)
5150fveq2d 6336 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → ((ℝ D 𝐹)‘𝑦) = ((ℝ D 𝐹)‘𝑥))
5251negeqd 10477 . . . . . . 7 (((𝜑𝑥 ∈ (𝐴(,)𝐵)) ∧ 𝑦 = 𝑥) → -((ℝ D 𝐹)‘𝑦) = -((ℝ D 𝐹)‘𝑥))
5344renegcld 10659 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → -((ℝ D 𝐹)‘𝑥) ∈ ℝ)
5449, 52, 43, 53fvmptd 6430 . . . . . 6 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((𝑦𝐸 ↦ -((ℝ D 𝐹)‘𝑦))‘𝑥) = -((ℝ D 𝐹)‘𝑥))
5548, 54eqtrd 2805 . . . . 5 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥) = -((ℝ D 𝐹)‘𝑥))
5646, 55breqtrrd 4814 . . . 4 ((𝜑𝑥 ∈ (𝐴(,)𝐵)) → 0 < ((ℝ D (𝑦𝐸 ↦ -(𝐹𝑦)))‘𝑥))
571, 2, 3, 8, 35, 36, 56fdvposlt 31017 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐴) < ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐵))
58 eqidd 2772 . . . 4 (𝜑 → (𝑦𝐸 ↦ -(𝐹𝑦)) = (𝑦𝐸 ↦ -(𝐹𝑦)))
59 simpr 471 . . . . . 6 ((𝜑𝑦 = 𝐴) → 𝑦 = 𝐴)
6059fveq2d 6336 . . . . 5 ((𝜑𝑦 = 𝐴) → (𝐹𝑦) = (𝐹𝐴))
6160negeqd 10477 . . . 4 ((𝜑𝑦 = 𝐴) → -(𝐹𝑦) = -(𝐹𝐴))
624, 2ffvelrnd 6503 . . . . 5 (𝜑 → (𝐹𝐴) ∈ ℝ)
6362renegcld 10659 . . . 4 (𝜑 → -(𝐹𝐴) ∈ ℝ)
6458, 61, 2, 63fvmptd 6430 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐴) = -(𝐹𝐴))
65 simpr 471 . . . . . 6 ((𝜑𝑦 = 𝐵) → 𝑦 = 𝐵)
6665fveq2d 6336 . . . . 5 ((𝜑𝑦 = 𝐵) → (𝐹𝑦) = (𝐹𝐵))
6766negeqd 10477 . . . 4 ((𝜑𝑦 = 𝐵) → -(𝐹𝑦) = -(𝐹𝐵))
684, 3ffvelrnd 6503 . . . . 5 (𝜑 → (𝐹𝐵) ∈ ℝ)
6968renegcld 10659 . . . 4 (𝜑 → -(𝐹𝐵) ∈ ℝ)
7058, 67, 3, 69fvmptd 6430 . . 3 (𝜑 → ((𝑦𝐸 ↦ -(𝐹𝑦))‘𝐵) = -(𝐹𝐵))
7157, 64, 703brtr3d 4817 . 2 (𝜑 → -(𝐹𝐴) < -(𝐹𝐵))
7268, 62ltnegd 10807 . 2 (𝜑 → ((𝐹𝐵) < (𝐹𝐴) ↔ -(𝐹𝐴) < -(𝐹𝐵)))
7371, 72mpbird 247 1 (𝜑 → (𝐹𝐵) < (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  wss 3723  {cpr 4318   class class class wbr 4786  cmpt 4863  wf 6027  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138   < clt 10276  -cneg 10469  (,)cioo 12380  [,]cicc 12383  cnccncf 22899   D cdv 23847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cc 9459  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-ofr 7045  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-acn 8968  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-ovol 23452  df-vol 23453  df-mbf 23607  df-itg1 23608  df-itg2 23609  df-ibl 23610  df-itg 23611  df-0p 23657  df-limc 23850  df-dv 23851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator