![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdmd | Structured version Visualization version GIF version |
Description: The domain of a mapping. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
fdmd.1 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
fdmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdmd.1 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | fdm 6191 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 dom cdm 5249 ⟶wf 6027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 383 df-fn 6034 df-f 6035 |
This theorem is referenced by: limsuppnfdlem 40451 limsupvaluz 40458 climxrrelem 40499 climxrre 40500 liminfvalxr 40533 xlimmnfvlem2 40577 xlimpnfvlem2 40581 issmfd 41464 issmfdf 41466 cnfsmf 41469 issmfled 41486 smfmbfcex 41488 issmfgtd 41489 smfsuplem1 41537 |
Copyright terms: Public domain | W3C validator |