MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fczsupp0 Structured version   Visualization version   GIF version

Theorem fczsupp0 7481
Description: The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019.)
Assertion
Ref Expression
fczsupp0 ((𝐵 × {𝑍}) supp 𝑍) = ∅

Proof of Theorem fczsupp0
StepHypRef Expression
1 eqidd 2749 . . 3 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) = (𝐵 × {𝑍}))
2 fnconstg 6242 . . . . 5 (𝑍 ∈ V → (𝐵 × {𝑍}) Fn 𝐵)
32adantl 473 . . . 4 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) Fn 𝐵)
4 snnzg 4439 . . . . . 6 (𝑍 ∈ V → {𝑍} ≠ ∅)
54adantl 473 . . . . 5 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → {𝑍} ≠ ∅)
6 simpl 474 . . . . 5 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) ∈ V)
7 xpexcnv 7261 . . . . 5 (({𝑍} ≠ ∅ ∧ (𝐵 × {𝑍}) ∈ V) → 𝐵 ∈ V)
85, 6, 7syl2anc 696 . . . 4 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝐵 ∈ V)
9 simpr 479 . . . 4 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V)
10 fnsuppeq0 7480 . . . 4 (((𝐵 × {𝑍}) Fn 𝐵𝐵 ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍})))
113, 8, 9, 10syl3anc 1463 . . 3 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍})))
121, 11mpbird 247 . 2 (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅)
13 supp0prc 7454 . 2 (¬ ((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅)
1412, 13pm2.61i 176 1 ((𝐵 × {𝑍}) supp 𝑍) = ∅
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1620  wcel 2127  wne 2920  Vcvv 3328  c0 4046  {csn 4309   × cxp 5252   Fn wfn 6032  (class class class)co 6801   supp csupp 7451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-reu 3045  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-supp 7452
This theorem is referenced by:  fczfsuppd  8446  cantnf  8751
  Copyright terms: Public domain W3C validator