![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fczsupp0 | Structured version Visualization version GIF version |
Description: The support of a constant function with value zero is empty. (Contributed by AV, 30-Jun-2019.) |
Ref | Expression |
---|---|
fczsupp0 | ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2749 | . . 3 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) = (𝐵 × {𝑍})) | |
2 | fnconstg 6242 | . . . . 5 ⊢ (𝑍 ∈ V → (𝐵 × {𝑍}) Fn 𝐵) | |
3 | 2 | adantl 473 | . . . 4 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) Fn 𝐵) |
4 | snnzg 4439 | . . . . . 6 ⊢ (𝑍 ∈ V → {𝑍} ≠ ∅) | |
5 | 4 | adantl 473 | . . . . 5 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → {𝑍} ≠ ∅) |
6 | simpl 474 | . . . . 5 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (𝐵 × {𝑍}) ∈ V) | |
7 | xpexcnv 7261 | . . . . 5 ⊢ (({𝑍} ≠ ∅ ∧ (𝐵 × {𝑍}) ∈ V) → 𝐵 ∈ V) | |
8 | 5, 6, 7 | syl2anc 696 | . . . 4 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝐵 ∈ V) |
9 | simpr 479 | . . . 4 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → 𝑍 ∈ V) | |
10 | fnsuppeq0 7480 | . . . 4 ⊢ (((𝐵 × {𝑍}) Fn 𝐵 ∧ 𝐵 ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍}))) | |
11 | 3, 8, 9, 10 | syl3anc 1463 | . . 3 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → (((𝐵 × {𝑍}) supp 𝑍) = ∅ ↔ (𝐵 × {𝑍}) = (𝐵 × {𝑍}))) |
12 | 1, 11 | mpbird 247 | . 2 ⊢ (((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅) |
13 | supp0prc 7454 | . 2 ⊢ (¬ ((𝐵 × {𝑍}) ∈ V ∧ 𝑍 ∈ V) → ((𝐵 × {𝑍}) supp 𝑍) = ∅) | |
14 | 12, 13 | pm2.61i 176 | 1 ⊢ ((𝐵 × {𝑍}) supp 𝑍) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ≠ wne 2920 Vcvv 3328 ∅c0 4046 {csn 4309 × cxp 5252 Fn wfn 6032 (class class class)co 6801 supp csupp 7451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-supp 7452 |
This theorem is referenced by: fczfsuppd 8446 cantnf 8751 |
Copyright terms: Public domain | W3C validator |