MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fctop Structured version   Visualization version   GIF version

Theorem fctop 21028
Description: The finite complement topology on a set 𝐴. Example 3 in [Munkres] p. 77. (Contributed by FL, 15-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
fctop (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem fctop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4593 . . . . . . . 8 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
2 ssrab2 3834 . . . . . . . . 9 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴
3 sspwuni 4743 . . . . . . . . 9 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝐴)
42, 3mpbi 220 . . . . . . . 8 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝐴
51, 4syl6ss 3762 . . . . . . 7 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦𝐴)
6 vuniex 7100 . . . . . . . 8 𝑦 ∈ V
76elpw 4301 . . . . . . 7 ( 𝑦 ∈ 𝒫 𝐴 𝑦𝐴)
85, 7sylibr 224 . . . . . 6 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦 ∈ 𝒫 𝐴)
9 uni0c 4598 . . . . . . . . . . 11 ( 𝑦 = ∅ ↔ ∀𝑧𝑦 𝑧 = ∅)
109notbii 309 . . . . . . . . . 10 𝑦 = ∅ ↔ ¬ ∀𝑧𝑦 𝑧 = ∅)
11 rexnal 3142 . . . . . . . . . 10 (∃𝑧𝑦 ¬ 𝑧 = ∅ ↔ ¬ ∀𝑧𝑦 𝑧 = ∅)
1210, 11bitr4i 267 . . . . . . . . 9 𝑦 = ∅ ↔ ∃𝑧𝑦 ¬ 𝑧 = ∅)
13 ssel2 3745 . . . . . . . . . . . . . . . . 17 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
14 difeq2 3871 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → (𝐴𝑥) = (𝐴𝑧))
1514eleq1d 2834 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑧) ∈ Fin))
16 eqeq1 2774 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅))
1715, 16orbi12d 883 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑧 → (((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅)))
1817elrab 3513 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅)))
1913, 18sylib 208 . . . . . . . . . . . . . . . 16 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅)))
2019simprd 477 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅))
2120ord 844 . . . . . . . . . . . . . 14 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (¬ (𝐴𝑧) ∈ Fin → 𝑧 = ∅))
2221con1d 141 . . . . . . . . . . . . 13 ((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) → (¬ 𝑧 = ∅ → (𝐴𝑧) ∈ Fin))
2322imp 393 . . . . . . . . . . . 12 (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴𝑧) ∈ Fin)
24 elssuni 4601 . . . . . . . . . . . . . . . 16 (𝑧𝑦𝑧 𝑦)
2524sscond 3896 . . . . . . . . . . . . . . 15 (𝑧𝑦 → (𝐴 𝑦) ⊆ (𝐴𝑧))
26 ssfi 8335 . . . . . . . . . . . . . . 15 (((𝐴𝑧) ∈ Fin ∧ (𝐴 𝑦) ⊆ (𝐴𝑧)) → (𝐴 𝑦) ∈ Fin)
2725, 26sylan2 572 . . . . . . . . . . . . . 14 (((𝐴𝑧) ∈ Fin ∧ 𝑧𝑦) → (𝐴 𝑦) ∈ Fin)
2827expcom 398 . . . . . . . . . . . . 13 (𝑧𝑦 → ((𝐴𝑧) ∈ Fin → (𝐴 𝑦) ∈ Fin))
2928ad2antlr 698 . . . . . . . . . . . 12 (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) → ((𝐴𝑧) ∈ Fin → (𝐴 𝑦) ∈ Fin))
3023, 29mpd 15 . . . . . . . . . . 11 (((𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧𝑦) ∧ ¬ 𝑧 = ∅) → (𝐴 𝑦) ∈ Fin)
3130exp31 406 . . . . . . . . . 10 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → (𝑧𝑦 → (¬ 𝑧 = ∅ → (𝐴 𝑦) ∈ Fin)))
3231rexlimdv 3177 . . . . . . . . 9 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → (∃𝑧𝑦 ¬ 𝑧 = ∅ → (𝐴 𝑦) ∈ Fin))
3312, 32syl5bi 232 . . . . . . . 8 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → (¬ 𝑦 = ∅ → (𝐴 𝑦) ∈ Fin))
3433con1d 141 . . . . . . 7 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → (¬ (𝐴 𝑦) ∈ Fin → 𝑦 = ∅))
3534orrd 843 . . . . . 6 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → ((𝐴 𝑦) ∈ Fin ∨ 𝑦 = ∅))
36 difeq2 3871 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴 𝑦))
3736eleq1d 2834 . . . . . . . 8 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ Fin ↔ (𝐴 𝑦) ∈ Fin))
38 eqeq1 2774 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
3937, 38orbi12d 883 . . . . . . 7 (𝑥 = 𝑦 → (((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴 𝑦) ∈ Fin ∨ 𝑦 = ∅)))
4039elrab 3513 . . . . . 6 ( 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴 𝑦) ∈ Fin ∨ 𝑦 = ∅)))
418, 35, 40sylanbrc 564 . . . . 5 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
4241ax-gen 1869 . . . 4 𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
43 ssinss1 3988 . . . . . . . . 9 (𝑦𝐴 → (𝑦𝑧) ⊆ 𝐴)
44 vex 3352 . . . . . . . . . 10 𝑦 ∈ V
4544elpw 4301 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝐴𝑦𝐴)
4644inex1 4930 . . . . . . . . . 10 (𝑦𝑧) ∈ V
4746elpw 4301 . . . . . . . . 9 ((𝑦𝑧) ∈ 𝒫 𝐴 ↔ (𝑦𝑧) ⊆ 𝐴)
4843, 45, 473imtr4i 281 . . . . . . . 8 (𝑦 ∈ 𝒫 𝐴 → (𝑦𝑧) ∈ 𝒫 𝐴)
4948ad2antrr 697 . . . . . . 7 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ∈ Fin ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅))) → (𝑦𝑧) ∈ 𝒫 𝐴)
50 difindi 4028 . . . . . . . . . . 11 (𝐴 ∖ (𝑦𝑧)) = ((𝐴𝑦) ∪ (𝐴𝑧))
51 unfi 8382 . . . . . . . . . . 11 (((𝐴𝑦) ∈ Fin ∧ (𝐴𝑧) ∈ Fin) → ((𝐴𝑦) ∪ (𝐴𝑧)) ∈ Fin)
5250, 51syl5eqel 2853 . . . . . . . . . 10 (((𝐴𝑦) ∈ Fin ∧ (𝐴𝑧) ∈ Fin) → (𝐴 ∖ (𝑦𝑧)) ∈ Fin)
5352orcd 853 . . . . . . . . 9 (((𝐴𝑦) ∈ Fin ∧ (𝐴𝑧) ∈ Fin) → ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅))
54 ineq1 3956 . . . . . . . . . . 11 (𝑦 = ∅ → (𝑦𝑧) = (∅ ∩ 𝑧))
55 0in 4111 . . . . . . . . . . 11 (∅ ∩ 𝑧) = ∅
5654, 55syl6eq 2820 . . . . . . . . . 10 (𝑦 = ∅ → (𝑦𝑧) = ∅)
5756olcd 854 . . . . . . . . 9 (𝑦 = ∅ → ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅))
58 ineq2 3957 . . . . . . . . . . 11 (𝑧 = ∅ → (𝑦𝑧) = (𝑦 ∩ ∅))
59 in0 4110 . . . . . . . . . . 11 (𝑦 ∩ ∅) = ∅
6058, 59syl6eq 2820 . . . . . . . . . 10 (𝑧 = ∅ → (𝑦𝑧) = ∅)
6160olcd 854 . . . . . . . . 9 (𝑧 = ∅ → ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅))
6253, 57, 61ccase2 1024 . . . . . . . 8 ((((𝐴𝑦) ∈ Fin ∨ 𝑦 = ∅) ∧ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅)) → ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅))
6362ad2ant2l 732 . . . . . . 7 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ∈ Fin ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅))) → ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅))
6449, 63jca 495 . . . . . 6 (((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ∈ Fin ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅))) → ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅)))
65 difeq2 3871 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
6665eleq1d 2834 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐴𝑥) ∈ Fin ↔ (𝐴𝑦) ∈ Fin))
67 eqeq1 2774 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
6866, 67orbi12d 883 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴𝑦) ∈ Fin ∨ 𝑦 = ∅)))
6968elrab 3513 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ∈ Fin ∨ 𝑦 = ∅)))
7069, 18anbi12i 604 . . . . . 6 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ ((𝐴𝑦) ∈ Fin ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ ((𝐴𝑧) ∈ Fin ∨ 𝑧 = ∅))))
71 difeq2 3871 . . . . . . . . 9 (𝑥 = (𝑦𝑧) → (𝐴𝑥) = (𝐴 ∖ (𝑦𝑧)))
7271eleq1d 2834 . . . . . . . 8 (𝑥 = (𝑦𝑧) → ((𝐴𝑥) ∈ Fin ↔ (𝐴 ∖ (𝑦𝑧)) ∈ Fin))
73 eqeq1 2774 . . . . . . . 8 (𝑥 = (𝑦𝑧) → (𝑥 = ∅ ↔ (𝑦𝑧) = ∅))
7472, 73orbi12d 883 . . . . . . 7 (𝑥 = (𝑦𝑧) → (((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅)))
7574elrab 3513 . . . . . 6 ((𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ↔ ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ ((𝐴 ∖ (𝑦𝑧)) ∈ Fin ∨ (𝑦𝑧) = ∅)))
7664, 70, 753imtr4i 281 . . . . 5 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
7776rgen2a 3125 . . . 4 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}
7842, 77pm3.2i 447 . . 3 (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
79 pwexg 4978 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
80 rabexg 4942 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ V)
81 istopg 20919 . . . 4 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})))
8279, 80, 813syl 18 . . 3 (𝐴𝑉 → ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})))
8378, 82mpbiri 248 . 2 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ Top)
84 pwidg 4310 . . . . 5 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
85 0fin 8343 . . . . . . 7 ∅ ∈ Fin
8685orci 845 . . . . . 6 (∅ ∈ Fin ∨ 𝐴 = ∅)
8786a1i 11 . . . . 5 (𝐴𝑉 → (∅ ∈ Fin ∨ 𝐴 = ∅))
88 difeq2 3871 . . . . . . . . 9 (𝑥 = 𝐴 → (𝐴𝑥) = (𝐴𝐴))
89 difid 4093 . . . . . . . . 9 (𝐴𝐴) = ∅
9088, 89syl6eq 2820 . . . . . . . 8 (𝑥 = 𝐴 → (𝐴𝑥) = ∅)
9190eleq1d 2834 . . . . . . 7 (𝑥 = 𝐴 → ((𝐴𝑥) ∈ Fin ↔ ∅ ∈ Fin))
92 eqeq1 2774 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
9391, 92orbi12d 883 . . . . . 6 (𝑥 = 𝐴 → (((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅) ↔ (∅ ∈ Fin ∨ 𝐴 = ∅)))
9493elrab 3513 . . . . 5 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ↔ (𝐴 ∈ 𝒫 𝐴 ∧ (∅ ∈ Fin ∨ 𝐴 = ∅)))
9584, 87, 94sylanbrc 564 . . . 4 (𝐴𝑉𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
96 elssuni 4601 . . . 4 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
9795, 96syl 17 . . 3 (𝐴𝑉𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
984a1i 11 . . 3 (𝐴𝑉 {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ⊆ 𝐴)
9997, 98eqssd 3767 . 2 (𝐴𝑉𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)})
100 istopon 20936 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ Top ∧ 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)}))
10183, 99, 100sylanbrc 564 1 (𝐴𝑉 → {𝑥 ∈ 𝒫 𝐴 ∣ ((𝐴𝑥) ∈ Fin ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 826  wal 1628   = wceq 1630  wcel 2144  wral 3060  wrex 3061  {crab 3064  Vcvv 3349  cdif 3718  cun 3719  cin 3720  wss 3721  c0 4061  𝒫 cpw 4295   cuni 4572  cfv 6031  Fincfn 8108  Topctop 20917  TopOnctopon 20934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-oadd 7716  df-er 7895  df-en 8109  df-fin 8112  df-top 20918  df-topon 20935
This theorem is referenced by:  fctop2  21029
  Copyright terms: Public domain W3C validator