MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconstmpt2 Structured version   Visualization version   GIF version

Theorem fconstmpt2 6920
Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
Assertion
Ref Expression
fconstmpt2 ((𝐴 × 𝐵) × {𝐶}) = (𝑥𝐴, 𝑦𝐵𝐶)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem fconstmpt2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fconstmpt 5320 . 2 ((𝐴 × 𝐵) × {𝐶}) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶)
2 eqidd 2761 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐶)
32mpt2mpt 6917 . 2 (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐶)
41, 3eqtri 2782 1 ((𝐴 × 𝐵) × {𝐶}) = (𝑥𝐴, 𝑦𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  {csn 4321  cop 4327  cmpt 4881   × cxp 5264  cmpt2 6815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-iun 4674  df-opab 4865  df-mpt 4882  df-xp 5272  df-rel 5273  df-oprab 6817  df-mpt2 6818
This theorem is referenced by:  tposconst  7559  mat0op  20427  matsc  20458  mdetrsca2  20612  smadiadetglem2  20680
  Copyright terms: Public domain W3C validator