![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconstmpt2 | Structured version Visualization version GIF version |
Description: Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.) |
Ref | Expression |
---|---|
fconstmpt2 | ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 5320 | . 2 ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) | |
2 | eqidd 2761 | . . 3 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐶) | |
3 | 2 | mpt2mpt 6917 | . 2 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
4 | 1, 3 | eqtri 2782 | 1 ⊢ ((𝐴 × 𝐵) × {𝐶}) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 {csn 4321 〈cop 4327 ↦ cmpt 4881 × cxp 5264 ↦ cmpt2 6815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-iun 4674 df-opab 4865 df-mpt 4882 df-xp 5272 df-rel 5273 df-oprab 6817 df-mpt2 6818 |
This theorem is referenced by: tposconst 7559 mat0op 20427 matsc 20458 mdetrsca2 20612 smadiadetglem2 20680 |
Copyright terms: Public domain | W3C validator |