![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst6g | Structured version Visualization version GIF version |
Description: Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fconst6g | ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstg 6232 | . 2 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶{𝐵}) | |
2 | snssi 4472 | . 2 ⊢ (𝐵 ∈ 𝐶 → {𝐵} ⊆ 𝐶) | |
3 | 1, 2 | fssd 6197 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 × {𝐵}):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2144 {csn 4314 × cxp 5247 ⟶wf 6027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-fun 6033 df-fn 6034 df-f 6035 |
This theorem is referenced by: fconst6 6235 map0g 8049 fdiagfn 8054 mapsncnv 8057 brwdom2 8633 cantnf0 8735 fseqdom 9048 pwsdiagel 16364 setcmon 16943 setcepi 16944 pwsmnd 17532 pws0g 17533 0mhm 17565 pwspjmhm 17575 pwsgrp 17734 pwsinvg 17735 pwscmn 18472 pwsabl 18473 pwsring 18822 pws1 18823 pwscrng 18824 pwslmod 19182 psrvscacl 19607 psr0cl 19608 psrlmod 19615 mplsubglem 19648 coe1fval3 19792 coe1z 19847 coe1mul2 19853 coe1tm 19857 evls1sca 19902 frlmlmod 20309 frlmlss 20311 mamuvs1 20427 mamuvs2 20428 lmconst 21285 cnconst2 21307 pwstps 21653 xkopt 21678 xkopjcn 21679 tmdgsum 22118 tmdgsum2 22119 symgtgp 22124 cstucnd 22307 imasdsf1olem 22397 pwsxms 22556 pwsms 22557 mbfconstlem 23614 mbfmulc2lem 23633 i1fmulc 23689 itg2mulc 23733 dvconst 23899 dvcmul 23926 plypf1 24187 amgmlem 24936 dchrelbas2 25182 resf1o 29839 ofcccat 30954 poimirlem28 33763 lflvscl 34879 lflvsdi1 34880 lflvsdi2 34881 lflvsass 34883 constmap 37795 mendlmod 38282 dvsconst 39048 expgrowth 39053 mapssbi 39917 dvsinax 40639 amgmlemALT 43070 |
Copyright terms: Public domain | W3C validator |