MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst4 Structured version   Visualization version   GIF version

Theorem fconst4 6644
Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
fconst4 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (𝐹 “ {𝐵}) = 𝐴))

Proof of Theorem fconst4
StepHypRef Expression
1 fconst3 6643 . 2 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
2 cnvimass 5644 . . . . . 6 (𝐹 “ {𝐵}) ⊆ dom 𝐹
3 fndm 6152 . . . . . 6 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
42, 3syl5sseq 3795 . . . . 5 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) ⊆ 𝐴)
54biantrurd 530 . . . 4 (𝐹 Fn 𝐴 → (𝐴 ⊆ (𝐹 “ {𝐵}) ↔ ((𝐹 “ {𝐵}) ⊆ 𝐴𝐴 ⊆ (𝐹 “ {𝐵}))))
6 eqss 3760 . . . 4 ((𝐹 “ {𝐵}) = 𝐴 ↔ ((𝐹 “ {𝐵}) ⊆ 𝐴𝐴 ⊆ (𝐹 “ {𝐵})))
75, 6syl6bbr 278 . . 3 (𝐹 Fn 𝐴 → (𝐴 ⊆ (𝐹 “ {𝐵}) ↔ (𝐹 “ {𝐵}) = 𝐴))
87pm5.32i 672 . 2 ((𝐹 Fn 𝐴𝐴 ⊆ (𝐹 “ {𝐵})) ↔ (𝐹 Fn 𝐴 ∧ (𝐹 “ {𝐵}) = 𝐴))
91, 8bitri 264 1 (𝐹:𝐴⟶{𝐵} ↔ (𝐹 Fn 𝐴 ∧ (𝐹 “ {𝐵}) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1632  wss 3716  {csn 4322  ccnv 5266  dom cdm 5267  cima 5270   Fn wfn 6045  wf 6046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pr 5056
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-fv 6058
This theorem is referenced by:  lkr0f  34903
  Copyright terms: Public domain W3C validator