![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcomptf | Structured version Visualization version GIF version |
Description: Express composition of two functions as a maps-to applying both in sequence. This version has one less distinct variable restriction compared to fcompt 6543. (Contributed by Thierry Arnoux, 30-Jun-2017.) |
Ref | Expression |
---|---|
fcomptf.1 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
fcomptf | ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2913 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2913 | . . . . 5 ⊢ Ⅎ𝑥𝐷 | |
3 | nfcv 2913 | . . . . 5 ⊢ Ⅎ𝑥𝐸 | |
4 | 1, 2, 3 | nff 6181 | . . . 4 ⊢ Ⅎ𝑥 𝐴:𝐷⟶𝐸 |
5 | fcomptf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
6 | nfcv 2913 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
7 | 5, 6, 2 | nff 6181 | . . . 4 ⊢ Ⅎ𝑥 𝐵:𝐶⟶𝐷 |
8 | 4, 7 | nfan 1980 | . . 3 ⊢ Ⅎ𝑥(𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) |
9 | ffvelrn 6500 | . . . . 5 ⊢ ((𝐵:𝐶⟶𝐷 ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) | |
10 | 9 | adantll 693 | . . . 4 ⊢ (((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) ∧ 𝑥 ∈ 𝐶) → (𝐵‘𝑥) ∈ 𝐷) |
11 | 10 | ex 397 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝑥 ∈ 𝐶 → (𝐵‘𝑥) ∈ 𝐷)) |
12 | 8, 11 | ralrimi 3106 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → ∀𝑥 ∈ 𝐶 (𝐵‘𝑥) ∈ 𝐷) |
13 | ffn 6185 | . . . 4 ⊢ (𝐵:𝐶⟶𝐷 → 𝐵 Fn 𝐶) | |
14 | 13 | adantl 467 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 Fn 𝐶) |
15 | 5 | dffn5f 6394 | . . 3 ⊢ (𝐵 Fn 𝐶 ↔ 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) |
16 | 14, 15 | sylib 208 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐵 = (𝑥 ∈ 𝐶 ↦ (𝐵‘𝑥))) |
17 | ffn 6185 | . . . 4 ⊢ (𝐴:𝐷⟶𝐸 → 𝐴 Fn 𝐷) | |
18 | 17 | adantr 466 | . . 3 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 Fn 𝐷) |
19 | dffn5 6383 | . . 3 ⊢ (𝐴 Fn 𝐷 ↔ 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) | |
20 | 18, 19 | sylib 208 | . 2 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → 𝐴 = (𝑦 ∈ 𝐷 ↦ (𝐴‘𝑦))) |
21 | fveq2 6332 | . 2 ⊢ (𝑦 = (𝐵‘𝑥) → (𝐴‘𝑦) = (𝐴‘(𝐵‘𝑥))) | |
22 | 12, 16, 20, 21 | fmptcof 6540 | 1 ⊢ ((𝐴:𝐷⟶𝐸 ∧ 𝐵:𝐶⟶𝐷) → (𝐴 ∘ 𝐵) = (𝑥 ∈ 𝐶 ↦ (𝐴‘(𝐵‘𝑥)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Ⅎwnfc 2900 ↦ cmpt 4863 ∘ ccom 5253 Fn wfn 6026 ⟶wf 6027 ‘cfv 6031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-fv 6039 |
This theorem is referenced by: ofoprabco 29804 |
Copyright terms: Public domain | W3C validator |