Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcompt Structured version   Visualization version   GIF version

Theorem fcompt 6551
 Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Stefan O'Rear, 5-Oct-2014.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcompt ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷   𝑥,𝐸

Proof of Theorem fcompt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6508 . . 3 ((𝐵:𝐶𝐷𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
21adantll 752 . 2 (((𝐴:𝐷𝐸𝐵:𝐶𝐷) ∧ 𝑥𝐶) → (𝐵𝑥) ∈ 𝐷)
3 ffn 6194 . . . 4 (𝐵:𝐶𝐷𝐵 Fn 𝐶)
43adantl 473 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 Fn 𝐶)
5 dffn5 6391 . . 3 (𝐵 Fn 𝐶𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
64, 5sylib 208 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐵 = (𝑥𝐶 ↦ (𝐵𝑥)))
7 ffn 6194 . . . 4 (𝐴:𝐷𝐸𝐴 Fn 𝐷)
87adantr 472 . . 3 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 Fn 𝐷)
9 dffn5 6391 . . 3 (𝐴 Fn 𝐷𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
108, 9sylib 208 . 2 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → 𝐴 = (𝑦𝐷 ↦ (𝐴𝑦)))
11 fveq2 6340 . 2 (𝑦 = (𝐵𝑥) → (𝐴𝑦) = (𝐴‘(𝐵𝑥)))
122, 6, 10, 11fmptco 6547 1 ((𝐴:𝐷𝐸𝐵:𝐶𝐷) → (𝐴𝐵) = (𝑥𝐶 ↦ (𝐴‘(𝐵𝑥))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1620   ∈ wcel 2127   ↦ cmpt 4869   ∘ ccom 5258   Fn wfn 6032  ⟶wf 6033  ‘cfv 6037 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-fv 6045 This theorem is referenced by:  2fvcoidd  6703  revco  13751  repsco  13756  caucvgrlem2  14575  fucidcl  16797  fucsect  16804  prf1st  17016  prf2nd  17017  curfcl  17044  yonedalem4c  17089  yonedalem3b  17091  yonedainv  17093  frmdup3  17576  efginvrel1  18312  frgpup3lem  18361  frgpup3  18362  dprdfinv  18589  grpvlinv  20374  grpvrinv  20375  mhmvlin  20376  chcoeffeqlem  20863  prdstps  21605  imasdsf1olem  22350  gamcvg2lem  24955  meascnbl  30562  elmrsubrn  31695  mzprename  37783  mendassa  38235  fcomptss  39863  mulc1cncfg  40293  expcnfg  40295  cncficcgt0  40573  fprodsubrecnncnvlem  40593  fprodaddrecnncnvlem  40595  dvsinax  40599  dirkercncflem2  40793  fourierdlem18  40814  fourierdlem53  40848  fourierdlem93  40888  fourierdlem101  40896  fourierdlem111  40906  sge0resrnlem  41092  omeiunle  41206  ovolval3  41336  amgmwlem  43030
 Copyright terms: Public domain W3C validator