![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fco | Structured version Visualization version GIF version |
Description: Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
Ref | Expression |
---|---|
fco | ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f 5930 | . . 3 ⊢ (𝐹:𝐵⟶𝐶 ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶)) | |
2 | df-f 5930 | . . 3 ⊢ (𝐺:𝐴⟶𝐵 ↔ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵)) | |
3 | fnco 6037 | . . . . . . 7 ⊢ ((𝐹 Fn 𝐵 ∧ 𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐴) | |
4 | 3 | 3expib 1287 | . . . . . 6 ⊢ (𝐹 Fn 𝐵 → ((𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐴)) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → (𝐹 ∘ 𝐺) Fn 𝐴)) |
6 | rncoss 5418 | . . . . . . 7 ⊢ ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 | |
7 | sstr 3644 | . . . . . . 7 ⊢ ((ran (𝐹 ∘ 𝐺) ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ 𝐶) → ran (𝐹 ∘ 𝐺) ⊆ 𝐶) | |
8 | 6, 7 | mpan 706 | . . . . . 6 ⊢ (ran 𝐹 ⊆ 𝐶 → ran (𝐹 ∘ 𝐺) ⊆ 𝐶) |
9 | 8 | adantl 481 | . . . . 5 ⊢ ((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ran (𝐹 ∘ 𝐺) ⊆ 𝐶) |
10 | 5, 9 | jctird 566 | . . . 4 ⊢ ((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) → ((𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵) → ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶))) |
11 | 10 | imp 444 | . . 3 ⊢ (((𝐹 Fn 𝐵 ∧ ran 𝐹 ⊆ 𝐶) ∧ (𝐺 Fn 𝐴 ∧ ran 𝐺 ⊆ 𝐵)) → ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶)) |
12 | 1, 2, 11 | syl2anb 495 | . 2 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶)) |
13 | df-f 5930 | . 2 ⊢ ((𝐹 ∘ 𝐺):𝐴⟶𝐶 ↔ ((𝐹 ∘ 𝐺) Fn 𝐴 ∧ ran (𝐹 ∘ 𝐺) ⊆ 𝐶)) | |
14 | 12, 13 | sylibr 224 | 1 ⊢ ((𝐹:𝐵⟶𝐶 ∧ 𝐺:𝐴⟶𝐵) → (𝐹 ∘ 𝐺):𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ⊆ wss 3607 ran crn 5144 ∘ ccom 5147 Fn wfn 5921 ⟶wf 5922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-fun 5928 df-fn 5929 df-f 5930 |
This theorem is referenced by: fco2 6097 f1co 6148 foco 6163 mapen 8165 fsuppco2 8349 mapfienlem1 8351 mapfienlem3 8353 mapfien 8354 unxpwdom2 8534 wemapwe 8632 cofsmo 9129 cfcoflem 9132 isf34lem7 9239 isf34lem6 9240 canthp1lem2 9513 inar1 9635 addnqf 9808 mulnqf 9809 axdc4uzlem 12822 seqf1olem2 12881 wrdco 13623 lenco 13624 lo1o1 14307 o1co 14361 caucvgrlem2 14449 fsumcl2lem 14506 fsumadd 14514 fsummulc2 14560 fsumrelem 14583 supcvg 14632 fprodcl2lem 14724 fprodmul 14734 fproddiv 14735 fprodn0 14753 algcvg 15336 cofucl 16595 setccatid 16781 estrccatid 16819 funcestrcsetclem9 16835 funcsetcestrclem9 16850 yonedalem3b 16966 mhmco 17409 pwsco1mhm 17417 pwsco2mhm 17418 gsumwmhm 17429 f1omvdconj 17912 pmtrfinv 17927 symgtrinv 17938 psgnunilem1 17959 gsumval3lem1 18352 gsumval3lem2 18353 gsumval3 18354 gsumzcl2 18357 gsumzf1o 18359 gsumzaddlem 18367 gsumzmhm 18383 gsumzoppg 18390 gsumzinv 18391 gsumsub 18394 dprdf1o 18477 ablfaclem2 18531 psrass1lem 19425 psrnegcl 19444 coe1f2 19627 cnfldds 19804 dsmmbas2 20129 f1lindf 20209 lindfmm 20214 cpmadumatpolylem1 20734 cnco 21118 cnpco 21119 lmcnp 21156 cnmpt11 21514 cnmpt21 21522 qtopcn 21565 fmco 21812 flfcnp 21855 tsmsf1o 21995 tsmsmhm 21996 tsmssub 21999 imasdsf1olem 22225 comet 22365 nrmmetd 22426 isngp2 22448 isngp3 22449 tngngp2 22503 cnmet 22622 cnfldms 22626 cncfco 22757 cnfldcusp 23199 ovolfioo 23282 ovolficc 23283 ovolfsf 23286 ovollb 23293 ovolctb 23304 ovolicc2lem4 23334 ovolicc2 23336 volsup 23370 uniioovol 23393 uniioombllem3a 23398 uniioombllem3 23399 uniioombllem4 23400 uniioombllem5 23401 uniioombl 23403 mbfdm 23440 ismbfcn 23443 mbfres 23456 mbfimaopnlem 23467 cncombf 23470 limccnp 23700 dvcobr 23754 dvcof 23756 dvcjbr 23757 dvcj 23758 dvmptco 23780 dvlip2 23803 itgsubstlem 23856 coecj 24079 pserulm 24221 jensenlem2 24759 jensen 24760 amgmlem 24761 gamf 24814 dchrinv 25031 motcgrg 25484 vsfval 27616 imsdf 27672 lnocoi 27740 hocofi 28753 homco1 28788 homco2 28964 hmopco 29010 kbass2 29104 kbass5 29107 opsqrlem1 29127 opsqrlem6 29132 pjinvari 29178 fmptco1f1o 29562 fcobij 29628 fcobijfs 29629 mbfmco 30454 dstfrvclim1 30667 reprpmtf1o 30832 subfacp1lem5 31292 mrsubco 31544 mclsppslem 31606 circum 31694 mblfinlem2 33577 mbfresfi 33586 ftc1anclem5 33619 ghomco 33820 rngohomco 33903 tendococl 36377 mapco2g 37594 diophrw 37639 hausgraph 38107 sblpnf 38826 fcoss 39716 fcod 39738 limccog 40170 mbfres2cn 40492 volioof 40522 volioofmpt 40529 voliooicof 40531 stoweidlem31 40566 stoweidlem59 40594 subsaliuncllem 40893 sge0resrnlem 40938 hoicvr 41083 ovolval2lem 41178 ovolval2 41179 ovolval3 41182 ovolval4lem1 41184 ovolval5lem3 41189 mgmhmco 42126 amgmwlem 42876 |
Copyright terms: Public domain | W3C validator |