![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fbdmn0 | Structured version Visualization version GIF version |
Description: The domain of a filter base is nonempty. (Contributed by Mario Carneiro, 28-Nov-2013.) (Revised by Stefan O'Rear, 28-Jul-2015.) |
Ref | Expression |
---|---|
fbdmn0 | ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐵 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nelfb 21857 | . 2 ⊢ (𝐹 ∈ (fBas‘𝐵) → ¬ ∅ ∈ 𝐹) | |
2 | fveq2 6354 | . . . . . 6 ⊢ (𝐵 = ∅ → (fBas‘𝐵) = (fBas‘∅)) | |
3 | 2 | eleq2d 2826 | . . . . 5 ⊢ (𝐵 = ∅ → (𝐹 ∈ (fBas‘𝐵) ↔ 𝐹 ∈ (fBas‘∅))) |
4 | 3 | biimpd 219 | . . . 4 ⊢ (𝐵 = ∅ → (𝐹 ∈ (fBas‘𝐵) → 𝐹 ∈ (fBas‘∅))) |
5 | fbasne0 21856 | . . . . . 6 ⊢ (𝐹 ∈ (fBas‘∅) → 𝐹 ≠ ∅) | |
6 | n0 4075 | . . . . . 6 ⊢ (𝐹 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐹) | |
7 | 5, 6 | sylib 208 | . . . . 5 ⊢ (𝐹 ∈ (fBas‘∅) → ∃𝑥 𝑥 ∈ 𝐹) |
8 | fbelss 21859 | . . . . . . 7 ⊢ ((𝐹 ∈ (fBas‘∅) ∧ 𝑥 ∈ 𝐹) → 𝑥 ⊆ ∅) | |
9 | ss0 4118 | . . . . . . 7 ⊢ (𝑥 ⊆ ∅ → 𝑥 = ∅) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘∅) ∧ 𝑥 ∈ 𝐹) → 𝑥 = ∅) |
11 | simpr 479 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘∅) ∧ 𝑥 ∈ 𝐹) → 𝑥 ∈ 𝐹) | |
12 | 10, 11 | eqeltrrd 2841 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘∅) ∧ 𝑥 ∈ 𝐹) → ∅ ∈ 𝐹) |
13 | 7, 12 | exlimddv 2013 | . . . 4 ⊢ (𝐹 ∈ (fBas‘∅) → ∅ ∈ 𝐹) |
14 | 4, 13 | syl6com 37 | . . 3 ⊢ (𝐹 ∈ (fBas‘𝐵) → (𝐵 = ∅ → ∅ ∈ 𝐹)) |
15 | 14 | necon3bd 2947 | . 2 ⊢ (𝐹 ∈ (fBas‘𝐵) → (¬ ∅ ∈ 𝐹 → 𝐵 ≠ ∅)) |
16 | 1, 15 | mpd 15 | 1 ⊢ (𝐹 ∈ (fBas‘𝐵) → 𝐵 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∃wex 1853 ∈ wcel 2140 ≠ wne 2933 ⊆ wss 3716 ∅c0 4059 ‘cfv 6050 fBascfbas 19957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fv 6058 df-fbas 19966 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |