MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasweak Structured version   Visualization version   GIF version

Theorem fbasweak 21888
Description: A filter base on any set is also a filter base on any larger set. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbasweak ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → 𝐹 ∈ (fBas‘𝑌))

Proof of Theorem fbasweak
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1130 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → 𝐹 ⊆ 𝒫 𝑌)
2 simp1 1129 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → 𝐹 ∈ (fBas‘𝑋))
3 elfvdm 6361 . . . . . 6 (𝐹 ∈ (fBas‘𝑋) → 𝑋 ∈ dom fBas)
433ad2ant1 1126 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → 𝑋 ∈ dom fBas)
5 isfbas 21852 . . . . 5 (𝑋 ∈ dom fBas → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
64, 5syl 17 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → (𝐹 ∈ (fBas‘𝑋) ↔ (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
72, 6mpbid 222 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → (𝐹 ⊆ 𝒫 𝑋 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
87simprd 477 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))
9 isfbas 21852 . . 3 (𝑌𝑉 → (𝐹 ∈ (fBas‘𝑌) ↔ (𝐹 ⊆ 𝒫 𝑌 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
1093ad2ant3 1128 . 2 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → (𝐹 ∈ (fBas‘𝑌) ↔ (𝐹 ⊆ 𝒫 𝑌 ∧ (𝐹 ≠ ∅ ∧ ∅ ∉ 𝐹 ∧ ∀𝑥𝐹𝑦𝐹 (𝐹 ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
111, 8, 10mpbir2and 684 1 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝐹 ⊆ 𝒫 𝑌𝑌𝑉) → 𝐹 ∈ (fBas‘𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1070  wcel 2144  wne 2942  wnel 3045  wral 3060  cin 3720  wss 3721  c0 4061  𝒫 cpw 4295  dom cdm 5249  cfv 6031  fBascfbas 19948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fv 6039  df-fbas 19957
This theorem is referenced by:  snfbas  21889  fgabs  21902  fgtr  21913  trfg  21914  ssufl  21941  cfiluweak  22318  cfilresi  23311  cmetss  23331  minveclem4a  23419  minveclem4  23421
  Copyright terms: Public domain W3C validator