MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasfip Structured version   Visualization version   GIF version

Theorem fbasfip 21794
Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbasfip (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹))

Proof of Theorem fbasfip
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3904 . . . . . 6 (𝑦 ∈ (𝒫 𝐹 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐹𝑦 ∈ Fin))
2 elpwi 4276 . . . . . . 7 (𝑦 ∈ 𝒫 𝐹𝑦𝐹)
32anim1i 593 . . . . . 6 ((𝑦 ∈ 𝒫 𝐹𝑦 ∈ Fin) → (𝑦𝐹𝑦 ∈ Fin))
41, 3sylbi 207 . . . . 5 (𝑦 ∈ (𝒫 𝐹 ∩ Fin) → (𝑦𝐹𝑦 ∈ Fin))
5 fbssint 21764 . . . . . 6 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦𝐹𝑦 ∈ Fin) → ∃𝑧𝐹 𝑧 𝑦)
653expb 1113 . . . . 5 ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑦𝐹𝑦 ∈ Fin)) → ∃𝑧𝐹 𝑧 𝑦)
74, 6sylan2 492 . . . 4 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ∃𝑧𝐹 𝑧 𝑦)
8 0nelfb 21757 . . . . . . . . 9 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹)
98ad2antrr 764 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → ¬ ∅ ∈ 𝐹)
10 eleq1 2791 . . . . . . . . . 10 (𝑧 = ∅ → (𝑧𝐹 ↔ ∅ ∈ 𝐹))
1110biimpcd 239 . . . . . . . . 9 (𝑧𝐹 → (𝑧 = ∅ → ∅ ∈ 𝐹))
1211adantl 473 . . . . . . . 8 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → (𝑧 = ∅ → ∅ ∈ 𝐹))
139, 12mtod 189 . . . . . . 7 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → ¬ 𝑧 = ∅)
14 ss0 4082 . . . . . . 7 (𝑧 ⊆ ∅ → 𝑧 = ∅)
1513, 14nsyl 135 . . . . . 6 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧𝐹) → ¬ 𝑧 ⊆ ∅)
1615adantrr 755 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧𝐹𝑧 𝑦)) → ¬ 𝑧 ⊆ ∅)
17 sseq2 3733 . . . . . . 7 (∅ = 𝑦 → (𝑧 ⊆ ∅ ↔ 𝑧 𝑦))
1817biimprcd 240 . . . . . 6 (𝑧 𝑦 → (∅ = 𝑦𝑧 ⊆ ∅))
1918ad2antll 767 . . . . 5 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧𝐹𝑧 𝑦)) → (∅ = 𝑦𝑧 ⊆ ∅))
2016, 19mtod 189 . . . 4 (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧𝐹𝑧 𝑦)) → ¬ ∅ = 𝑦)
217, 20rexlimddv 3137 . . 3 ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ¬ ∅ = 𝑦)
2221nrexdv 3103 . 2 (𝐹 ∈ (fBas‘𝑋) → ¬ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = 𝑦)
23 0ex 4898 . . 3 ∅ ∈ V
24 elfi 8435 . . 3 ((∅ ∈ V ∧ 𝐹 ∈ (fBas‘𝑋)) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = 𝑦))
2523, 24mpan 708 . 2 (𝐹 ∈ (fBas‘𝑋) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = 𝑦))
2622, 25mtbird 314 1 (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1596  wcel 2103  wrex 3015  Vcvv 3304  cin 3679  wss 3680  c0 4023  𝒫 cpw 4266   cint 4583  cfv 6001  Fincfn 8072  ficfi 8432  fBascfbas 19857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-en 8073  df-fin 8076  df-fi 8433  df-fbas 19866
This theorem is referenced by:  fbunfip  21795
  Copyright terms: Public domain W3C validator