![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fbasfip | Structured version Visualization version GIF version |
Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.) |
Ref | Expression |
---|---|
fbasfip | ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3904 | . . . . . 6 ⊢ (𝑦 ∈ (𝒫 𝐹 ∩ Fin) ↔ (𝑦 ∈ 𝒫 𝐹 ∧ 𝑦 ∈ Fin)) | |
2 | elpwi 4276 | . . . . . . 7 ⊢ (𝑦 ∈ 𝒫 𝐹 → 𝑦 ⊆ 𝐹) | |
3 | 2 | anim1i 593 | . . . . . 6 ⊢ ((𝑦 ∈ 𝒫 𝐹 ∧ 𝑦 ∈ Fin) → (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) |
4 | 1, 3 | sylbi 207 | . . . . 5 ⊢ (𝑦 ∈ (𝒫 𝐹 ∩ Fin) → (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) |
5 | fbssint 21764 | . . . . . 6 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) | |
6 | 5 | 3expb 1113 | . . . . 5 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ (𝑦 ⊆ 𝐹 ∧ 𝑦 ∈ Fin)) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) |
7 | 4, 6 | sylan2 492 | . . . 4 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ∃𝑧 ∈ 𝐹 𝑧 ⊆ ∩ 𝑦) |
8 | 0nelfb 21757 | . . . . . . . . 9 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ 𝐹) | |
9 | 8 | ad2antrr 764 | . . . . . . . 8 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ ∅ ∈ 𝐹) |
10 | eleq1 2791 | . . . . . . . . . 10 ⊢ (𝑧 = ∅ → (𝑧 ∈ 𝐹 ↔ ∅ ∈ 𝐹)) | |
11 | 10 | biimpcd 239 | . . . . . . . . 9 ⊢ (𝑧 ∈ 𝐹 → (𝑧 = ∅ → ∅ ∈ 𝐹)) |
12 | 11 | adantl 473 | . . . . . . . 8 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → (𝑧 = ∅ → ∅ ∈ 𝐹)) |
13 | 9, 12 | mtod 189 | . . . . . . 7 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ 𝑧 = ∅) |
14 | ss0 4082 | . . . . . . 7 ⊢ (𝑧 ⊆ ∅ → 𝑧 = ∅) | |
15 | 13, 14 | nsyl 135 | . . . . . 6 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ 𝑧 ∈ 𝐹) → ¬ 𝑧 ⊆ ∅) |
16 | 15 | adantrr 755 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → ¬ 𝑧 ⊆ ∅) |
17 | sseq2 3733 | . . . . . . 7 ⊢ (∅ = ∩ 𝑦 → (𝑧 ⊆ ∅ ↔ 𝑧 ⊆ ∩ 𝑦)) | |
18 | 17 | biimprcd 240 | . . . . . 6 ⊢ (𝑧 ⊆ ∩ 𝑦 → (∅ = ∩ 𝑦 → 𝑧 ⊆ ∅)) |
19 | 18 | ad2antll 767 | . . . . 5 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → (∅ = ∩ 𝑦 → 𝑧 ⊆ ∅)) |
20 | 16, 19 | mtod 189 | . . . 4 ⊢ (((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) ∧ (𝑧 ∈ 𝐹 ∧ 𝑧 ⊆ ∩ 𝑦)) → ¬ ∅ = ∩ 𝑦) |
21 | 7, 20 | rexlimddv 3137 | . . 3 ⊢ ((𝐹 ∈ (fBas‘𝑋) ∧ 𝑦 ∈ (𝒫 𝐹 ∩ Fin)) → ¬ ∅ = ∩ 𝑦) |
22 | 21 | nrexdv 3103 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦) |
23 | 0ex 4898 | . . 3 ⊢ ∅ ∈ V | |
24 | elfi 8435 | . . 3 ⊢ ((∅ ∈ V ∧ 𝐹 ∈ (fBas‘𝑋)) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦)) | |
25 | 23, 24 | mpan 708 | . 2 ⊢ (𝐹 ∈ (fBas‘𝑋) → (∅ ∈ (fi‘𝐹) ↔ ∃𝑦 ∈ (𝒫 𝐹 ∩ Fin)∅ = ∩ 𝑦)) |
26 | 22, 25 | mtbird 314 | 1 ⊢ (𝐹 ∈ (fBas‘𝑋) → ¬ ∅ ∈ (fi‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ∃wrex 3015 Vcvv 3304 ∩ cin 3679 ⊆ wss 3680 ∅c0 4023 𝒫 cpw 4266 ∩ cint 4583 ‘cfv 6001 Fincfn 8072 ficfi 8432 fBascfbas 19857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-en 8073 df-fin 8076 df-fi 8433 df-fbas 19866 |
This theorem is referenced by: fbunfip 21795 |
Copyright terms: Public domain | W3C validator |