Proof of Theorem fargshiftfva
Step | Hyp | Ref
| Expression |
1 | | fz0add1fz1 12746 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁)) → (𝑙 + 1) ∈ (1...𝑁)) |
2 | | simpl 468 |
. . . . . . . . . . 11
⊢ (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) → (𝑙 + 1) ∈ (1...𝑁)) |
3 | 2 | adantr 466 |
. . . . . . . . . 10
⊢ ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑙 + 1) ∈ (1...𝑁)) |
4 | | fveq2 6332 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = (𝑙 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑙 + 1))) |
5 | 4 | fveq2d 6336 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑙 + 1) → (𝐸‘(𝐹‘𝑘)) = (𝐸‘(𝐹‘(𝑙 + 1)))) |
6 | | csbeq1 3685 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (𝑙 + 1) → ⦋𝑘 / 𝑥⦌𝑃 = ⦋(𝑙 + 1) / 𝑥⦌𝑃) |
7 | 5, 6 | eqeq12d 2786 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑙 + 1) → ((𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 ↔ (𝐸‘(𝐹‘(𝑙 + 1))) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
8 | 7 | adantl 467 |
. . . . . . . . . . 11
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 ↔ (𝐸‘(𝐹‘(𝑙 + 1))) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
9 | | simpl 468 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁)) → 𝑁 ∈
ℕ0) |
10 | 9 | adantl 467 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) → 𝑁 ∈
ℕ0) |
11 | 10 | anim1i 602 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸)) |
12 | 11 | adantr 466 |
. . . . . . . . . . . . . 14
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸)) |
13 | | simpr 471 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁)) → 𝑙 ∈ (0..^𝑁)) |
14 | 13 | ad3antlr 710 |
. . . . . . . . . . . . . 14
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → 𝑙 ∈ (0..^𝑁)) |
15 | | fargshift.g |
. . . . . . . . . . . . . . . . 17
⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) |
16 | 15 | fargshiftfv 41903 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (𝑙 ∈ (0..^𝑁) → (𝐺‘𝑙) = (𝐹‘(𝑙 + 1)))) |
17 | 16 | imp 393 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑙 ∈ (0..^𝑁)) → (𝐺‘𝑙) = (𝐹‘(𝑙 + 1))) |
18 | 17 | eqcomd 2777 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑙 ∈ (0..^𝑁)) → (𝐹‘(𝑙 + 1)) = (𝐺‘𝑙)) |
19 | 12, 14, 18 | syl2anc 573 |
. . . . . . . . . . . . 13
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝐹‘(𝑙 + 1)) = (𝐺‘𝑙)) |
20 | 19 | fveq2d 6336 |
. . . . . . . . . . . 12
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → (𝐸‘(𝐹‘(𝑙 + 1))) = (𝐸‘(𝐺‘𝑙))) |
21 | 20 | eqeq1d 2773 |
. . . . . . . . . . 11
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹‘(𝑙 + 1))) = ⦋(𝑙 + 1) / 𝑥⦌𝑃 ↔ (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
22 | 8, 21 | bitrd 268 |
. . . . . . . . . 10
⊢
(((((𝑙 + 1) ∈
(1...𝑁) ∧ (𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ 𝑘 = (𝑙 + 1)) → ((𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 ↔ (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
23 | 3, 22 | rspcdv 3463 |
. . . . . . . . 9
⊢ ((((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
24 | 23 | ex 397 |
. . . . . . . 8
⊢ (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) → (𝐹:(1...𝑁)⟶dom 𝐸 → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃))) |
25 | 24 | com23 86 |
. . . . . . 7
⊢ (((𝑙 + 1) ∈ (1...𝑁) ∧ (𝑁 ∈ ℕ0 ∧ 𝑙 ∈ (0..^𝑁))) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃))) |
26 | 1, 25 | mpancom 668 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝑙 ∈ (0..^𝑁)) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃))) |
27 | 26 | ex 397 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑙 ∈ (0..^𝑁) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝐹:(1...𝑁)⟶dom 𝐸 → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)))) |
28 | 27 | com24 95 |
. . . 4
⊢ (𝑁 ∈ ℕ0
→ (𝐹:(1...𝑁)⟶dom 𝐸 → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → (𝑙 ∈ (0..^𝑁) → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)))) |
29 | 28 | imp31 404 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ ∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃) → (𝑙 ∈ (0..^𝑁) → (𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |
30 | 29 | ralrimiv 3114 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) ∧ ∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃) → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃) |
31 | 30 | ex 397 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (∀𝑘 ∈ (1...𝑁)(𝐸‘(𝐹‘𝑘)) = ⦋𝑘 / 𝑥⦌𝑃 → ∀𝑙 ∈ (0..^𝑁)(𝐸‘(𝐺‘𝑙)) = ⦋(𝑙 + 1) / 𝑥⦌𝑃)) |