Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftfo Structured version   Visualization version   GIF version

Theorem fargshiftfo 41888
Description: If a function is onto, then also the shifted function is onto. (Contributed by Alexander van der Vekens, 24-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
Assertion
Ref Expression
fargshiftfo ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐸   𝑥,𝑁
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem fargshiftfo
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fof 6276 . . 3 (𝐹:(1...𝑁)–onto→dom 𝐸𝐹:(1...𝑁)⟶dom 𝐸)
2 fargshift.g . . . 4 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
32fargshiftf 41886 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
41, 3sylan2 492 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
52rnmpt 5526 . . 3 ran 𝐺 = {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))}
6 fofn 6278 . . . . . 6 (𝐹:(1...𝑁)–onto→dom 𝐸𝐹 Fn (1...𝑁))
7 fnrnfv 6404 . . . . . 6 (𝐹 Fn (1...𝑁) → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)})
86, 7syl 17 . . . . 5 (𝐹:(1...𝑁)–onto→dom 𝐸 → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)})
98adantl 473 . . . 4 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)})
10 df-fo 6055 . . . . . . 7 (𝐹:(1...𝑁)–onto→dom 𝐸 ↔ (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸))
1110biimpi 206 . . . . . 6 (𝐹:(1...𝑁)–onto→dom 𝐸 → (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸))
1211adantl 473 . . . . 5 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸))
13 eqeq1 2764 . . . . . . . . 9 (ran 𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} ↔ dom 𝐸 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)}))
14 eqcom 2767 . . . . . . . . 9 (dom 𝐸 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} ↔ {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸)
1513, 14syl6bb 276 . . . . . . . 8 (ran 𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} ↔ {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸))
16 ffn 6206 . . . . . . . . . . . . . 14 (𝐹:(1...𝑁)⟶dom 𝐸𝐹 Fn (1...𝑁))
17 fseq1hash 13357 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁)
1816, 17sylan2 492 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁)
191, 18sylan2 492 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (♯‘𝐹) = 𝑁)
20 fz0add1fz1 12732 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (1...𝑁))
21 nn0z 11592 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
22 fzval3 12731 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (1...𝑁) = (1..^(𝑁 + 1)))
2321, 22syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (1...𝑁) = (1..^(𝑁 + 1)))
24 nn0cn 11494 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
25 1cnd 10248 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
2624, 25addcomd 10430 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0 → (𝑁 + 1) = (1 + 𝑁))
2726oveq2d 6829 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (1..^(𝑁 + 1)) = (1..^(1 + 𝑁)))
2823, 27eqtrd 2794 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (1...𝑁) = (1..^(1 + 𝑁)))
2928eleq2d 2825 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝑧 ∈ (1...𝑁) ↔ 𝑧 ∈ (1..^(1 + 𝑁))))
3029biimpa 502 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑧 ∈ (1..^(1 + 𝑁)))
3121adantr 472 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑁 ∈ ℤ)
32 fzosubel3 12723 . . . . . . . . . . . . . . . . 17 ((𝑧 ∈ (1..^(1 + 𝑁)) ∧ 𝑁 ∈ ℤ) → (𝑧 − 1) ∈ (0..^𝑁))
3330, 31, 32syl2anc 696 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → (𝑧 − 1) ∈ (0..^𝑁))
34 oveq1 6820 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝑧 − 1) → (𝑥 + 1) = ((𝑧 − 1) + 1))
3534eqeq2d 2770 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑧 − 1) → (𝑧 = (𝑥 + 1) ↔ 𝑧 = ((𝑧 − 1) + 1)))
3635adantl 473 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) ∧ 𝑥 = (𝑧 − 1)) → (𝑧 = (𝑥 + 1) ↔ 𝑧 = ((𝑧 − 1) + 1)))
37 elfzelz 12535 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (1...𝑁) → 𝑧 ∈ ℤ)
3837zcnd 11675 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (1...𝑁) → 𝑧 ∈ ℂ)
3938adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑧 ∈ ℂ)
40 1cnd 10248 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 1 ∈ ℂ)
4139, 40npcand 10588 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → ((𝑧 − 1) + 1) = 𝑧)
4241eqcomd 2766 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → 𝑧 = ((𝑧 − 1) + 1))
4333, 36, 42rspcedvd 3456 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑧 ∈ (1...𝑁)) → ∃𝑥 ∈ (0..^𝑁)𝑧 = (𝑥 + 1))
44 fveq2 6352 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑥 + 1) → (𝐹𝑧) = (𝐹‘(𝑥 + 1)))
4544eqeq2d 2770 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑥 + 1) → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹‘(𝑥 + 1))))
4645adantl 473 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑧 = (𝑥 + 1)) → (𝑦 = (𝐹𝑧) ↔ 𝑦 = (𝐹‘(𝑥 + 1))))
4720, 43, 46rexxfrd 5030 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1))))
4847adantr 472 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) = 𝑁) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1))))
49 oveq2 6821 . . . . . . . . . . . . . . . 16 ((♯‘𝐹) = 𝑁 → (0..^(♯‘𝐹)) = (0..^𝑁))
5049rexeqdv 3284 . . . . . . . . . . . . . . 15 ((♯‘𝐹) = 𝑁 → (∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1)) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1))))
5150bibi2d 331 . . . . . . . . . . . . . 14 ((♯‘𝐹) = 𝑁 → ((∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))) ↔ (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1)))))
5251adantl 473 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) = 𝑁) → ((∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))) ↔ (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^𝑁)𝑦 = (𝐹‘(𝑥 + 1)))))
5348, 52mpbird 247 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (♯‘𝐹) = 𝑁) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))))
5419, 53syldan 488 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧) ↔ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))))
5554abbidv 2879 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))})
5655eqeq1d 2762 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → ({𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸 ↔ {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))
5756biimpcd 239 . . . . . . . 8 ({𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} = dom 𝐸 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))
5815, 57syl6bi 243 . . . . . . 7 (ran 𝐹 = dom 𝐸 → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)))
5958com23 86 . . . . . 6 (ran 𝐹 = dom 𝐸 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)))
6059adantl 473 . . . . 5 ((𝐹 Fn (1...𝑁) ∧ ran 𝐹 = dom 𝐸) → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)))
6112, 60mpcom 38 . . . 4 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → (ran 𝐹 = {𝑦 ∣ ∃𝑧 ∈ (1...𝑁)𝑦 = (𝐹𝑧)} → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸))
629, 61mpd 15 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → {𝑦 ∣ ∃𝑥 ∈ (0..^(♯‘𝐹))𝑦 = (𝐹‘(𝑥 + 1))} = dom 𝐸)
635, 62syl5eq 2806 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → ran 𝐺 = dom 𝐸)
64 dffo2 6280 . 2 (𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸 ↔ (𝐺:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ ran 𝐺 = dom 𝐸))
654, 63, 64sylanbrc 701 1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–onto→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–onto→dom 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  {cab 2746  wrex 3051  cmpt 4881  dom cdm 5266  ran crn 5267   Fn wfn 6044  wf 6045  ontowfo 6047  cfv 6049  (class class class)co 6813  cc 10126  0cc0 10128  1c1 10129   + caddc 10131  cmin 10458  0cn0 11484  cz 11569  ...cfz 12519  ..^cfzo 12659  chash 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-hash 13312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator