MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falortru Structured version   Visualization version   GIF version

Theorem falortru 1552
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falortru ((⊥ ∨ ⊤) ↔ ⊤)

Proof of Theorem falortru
StepHypRef Expression
1 tru 1527 . . 3
21olci 405 . 2 (⊥ ∨ ⊤)
32bitru 1536 1 ((⊥ ∨ ⊤) ↔ ⊤)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 382  wtru 1524  wfal 1528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 384  df-tru 1526
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator