MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  facp1 Structured version   Visualization version   GIF version

Theorem facp1 13268
Description: The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facp1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))

Proof of Theorem facp1
StepHypRef Expression
1 elnn0 11495 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 peano2nn 11233 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
3 facnn 13265 . . . . 5 ((𝑁 + 1) ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
42, 3syl 17 . . . 4 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = (seq1( · , I )‘(𝑁 + 1)))
5 ovex 6822 . . . . . . 7 (𝑁 + 1) ∈ V
6 fvi 6397 . . . . . . 7 ((𝑁 + 1) ∈ V → ( I ‘(𝑁 + 1)) = (𝑁 + 1))
75, 6ax-mp 5 . . . . . 6 ( I ‘(𝑁 + 1)) = (𝑁 + 1)
87oveq2i 6803 . . . . 5 ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))) = ((seq1( · , I )‘𝑁) · (𝑁 + 1))
9 seqp1 13022 . . . . . 6 (𝑁 ∈ (ℤ‘1) → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))))
10 nnuz 11924 . . . . . 6 ℕ = (ℤ‘1)
119, 10eleq2s 2867 . . . . 5 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((seq1( · , I )‘𝑁) · ( I ‘(𝑁 + 1))))
12 facnn 13265 . . . . . 6 (𝑁 ∈ ℕ → (!‘𝑁) = (seq1( · , I )‘𝑁))
1312oveq1d 6807 . . . . 5 (𝑁 ∈ ℕ → ((!‘𝑁) · (𝑁 + 1)) = ((seq1( · , I )‘𝑁) · (𝑁 + 1)))
148, 11, 133eqtr4a 2830 . . . 4 (𝑁 ∈ ℕ → (seq1( · , I )‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
154, 14eqtrd 2804 . . 3 (𝑁 ∈ ℕ → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
16 0p1e1 11333 . . . . . 6 (0 + 1) = 1
1716fveq2i 6335 . . . . 5 (!‘(0 + 1)) = (!‘1)
18 fac1 13267 . . . . 5 (!‘1) = 1
1917, 18eqtri 2792 . . . 4 (!‘(0 + 1)) = 1
20 fvoveq1 6815 . . . 4 (𝑁 = 0 → (!‘(𝑁 + 1)) = (!‘(0 + 1)))
21 fveq2 6332 . . . . . 6 (𝑁 = 0 → (!‘𝑁) = (!‘0))
22 oveq1 6799 . . . . . 6 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
2321, 22oveq12d 6810 . . . . 5 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = ((!‘0) · (0 + 1)))
24 fac0 13266 . . . . . . 7 (!‘0) = 1
2524, 16oveq12i 6804 . . . . . 6 ((!‘0) · (0 + 1)) = (1 · 1)
26 1t1e1 11376 . . . . . 6 (1 · 1) = 1
2725, 26eqtri 2792 . . . . 5 ((!‘0) · (0 + 1)) = 1
2823, 27syl6eq 2820 . . . 4 (𝑁 = 0 → ((!‘𝑁) · (𝑁 + 1)) = 1)
2919, 20, 283eqtr4a 2830 . . 3 (𝑁 = 0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
3015, 29jaoi 837 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
311, 30sylbi 207 1 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 826   = wceq 1630  wcel 2144  Vcvv 3349   I cid 5156  cfv 6031  (class class class)co 6792  0cc0 10137  1c1 10138   + caddc 10140   · cmul 10142  cn 11221  0cn0 11493  cuz 11887  seqcseq 13007  !cfa 13263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-seq 13008  df-fac 13264
This theorem is referenced by:  fac2  13269  fac3  13270  fac4  13271  facnn2  13272  faccl  13273  facdiv  13277  facwordi  13279  faclbnd  13280  faclbnd6  13289  facubnd  13290  bcm1k  13305  bcp1n  13306  4bc2eq6  13319  efcllem  15013  ef01bndlem  15119  eirrlem  15137  dvdsfac  15256  prmfac1  15637  pcfac  15809  2expltfac  16005  aaliou3lem2  24317  aaliou3lem8  24319  dvtaylp  24343  advlogexp  24621  facgam  25012  bcmono  25222  ex-fac  27644  subfacval2  31501  subfaclim  31502  faclim  31964  faclim2  31966  bccp1k  39059  binomcxplemwb  39066  wallispi2lem2  40800  stirlinglem4  40805  etransclem24  40986  etransclem28  40990  etransclem38  41000
  Copyright terms: Public domain W3C validator